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ABSTRACT: A hybrid approach combining machine learning algorithms with molecular simulation is utilized to screen
hypothetical metal−organic framework (h-MOF) database for the best material to separate ethane (C2H6) and ethylene (C2H4). In
particular, we rationalized the relation between structural and chemical properties of h-MOF with the C2H6/C2H4 selectivity. 8% h-
MOFs were chosen randomly from the h-MOF dataset as a training set. The simulations were conducted at 298 K and 1 bar using a
multicomponent grand-canonical Monte Carlo method to obtain the C2H6/C2H4 selectivity. Based on the training set, the random
forest (RF) model was developed to predict the selectivity of the rest of the h-MOFs. Among all the chemical and structural
properties, void fraction plays a significant role in predicting the equilibrium C2H6/C2H4 selectivity. The trained machine learning
model can reasonably predict the C2H6/C2H4 selectivity of the remaining h-MOF materials with an RF score of 0.89. Four h-MOFs
have shown the best performance, which was compared with the previously discovered materials. The top four h-MOFs were further
simulated at different pressures to obtain the adsorption isotherms. Further, the energy contribution of secondary building units and
the local density profiles were analyzed to understand the enhanced interaction between h-MOF atoms and C2H6.

■ INTRODUCTION

The worldwide production of over 150 million tons makes
ethylene (C2H4) the leading organic compound produced
industrially. Primarily, ethylene is used as a feedstock for
petrochemical industries wherein it undergoes a polymerization
reaction to produce polyethylene, which is widely used plastic
containing polymer chains with different chain lengths.
Industrially, it is produced by steam cracking and thermal
decomposition of naphtha or ethane (C2H6), in which a certain
amount of C2H6 residue coexists in the product that is required
to separate to produce polymer-grade C2H4. The traditional
industrial separation process is cryogenic distillation for ethane/
ethylene separation, one of the most energy-intensive chemical
industry processes. This process requires large distillation
columns at high pressure because of their similar volatilities
and size.1,2 Hence, there is a need to find an alternative
technique to minimize energy consumption.
Among the technologies recently developed, adsorbent-based

gas separation through pressure swing adsorption, temperature
swing adsorption, and membrane-based separation are promis-
ing technologies to replace the traditional industrial separation
methods. Previously, numerous researchers have investigated
various types of nanoporous materials for different applica-
tions.3−7

Utilizing this simple approach, an ideal adsorbent should have
high C2H4 selectivity and high C2H4 uptake. In this context,
numerous researchers have studied the adsorption phenomena
of C2H4, C2H6, and their mixture on various types of adsorbents
using experiments and in-silico methods. Some of the
adsorbents are γ-Al2O3,

8 ITQ-59 zeolitic material,9 metal−
organic framework (MOF) Fe2(O2)(dobdc),

10 and so forth.

The most studied nanoporous materials are MOF,11 covalent
organic frameworks,12 activated carbon,13 zeolite,14,15 zeolitic
imidazolate framework,16 and porous polymer network.17

Among the various adsorbents, MOF has attracted particular
interest because of its easy synthesis, high surface area, and
porosity. Several studies have focused on discovering the best
MOF material for CO2,

11 CH4
18 adsorption, and the separation

of CO2/CH4,
19 CO2/N2.

20 Numerous studies were conducted
on the development of potential adsorbents for the separation of
C2H4/C2H6. For example, Chen et al. reported an iron-based
MOF PCN-250,21 which has a selectivity of 2.0 at 298 K and 1
bar pressure. Similarly, Pires et al. reported the C2H6/C2H4
selectivity of themost commonMOF, that is, IRMOF-822 at 298
K and 318 K, up to a pressure of 1000 kPa. The selectivity values
of IRMOF-8 range between 1.6 and 3.4 depending on
temperature and pressure. Until now, microporous MOF
Fe2(dobdc) developed by Bloch et al.10 has the highest C2H6/
C2H4 selectivity, which is 4.3. Discovery of new potential MOFs
for a particular application is an ongoing research area. However,
for a computational study, MOFs can be constructed from
modular molecular building blocks, typically metal-clusters, and
organic linkers. These building blocks can be assembled to form
an almost unlimited number of MOFs. The hypothetical MOF
(h-MOF) database generation method was inspired by the work
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on database creation of hypothetical zeolites by Earl and
Deem.23 Using this approach, Wilmer et al.24 created a database
of h-MOFs. The database of experimentally discovered and
computationally generated MOFs is in millions, and the best
material for C2H6/C2H4 separation is still an open question. To
find a suitable material for a specific application, experimentally
synthesizing the vast materials database is practically not viable.
Similarly, a direct molecular simulation approach for each
fictitious or experimentally realized material is an inefficient way
to use computational resources and time. Therefore, a cost-
effective screening technique is imminent to find the best MOF
for the C2H6/C2H4 separation.
In this context, a hybrid approach combining machine

learning algorithms with molecular simulations could be an
effective way to screen materials. It is well known that MOFs’
chemical and structural properties can directly affect the gas
adsorption and gas separation. The mathematical models can
predict the amount of adsorbed gas or the selectivity based on
the chemical and structural properties. In the literature, there
have been several studies that showed the power of machine
learning techniques. For example, Haranczyk et al.25 used the
random forest (RF) algorithm to screen the nanoporous
material genome (NMG) database of about 670,000 nano-
porous materials for xenon/krypton separations. Similarly, Smit
et al.26 used a neural network algorithm to screen the same
NMG database containing over 850,000 materials to explore the
limits of H2 storage. There are several works in the literature in
whichmachine learning-based techniques were used, viz., for the
selection of compounds that bind to proteins,27 MOF analogous
for water adsorption,28 zeolitic materials for carbon capture,29

and so forth.
In this work, our focus is to identify the best MOF materials

from the h-MOF database using molecular simulations coupled
with a machine learning algorithm. In particular, we will
rationalize the relationship between structural and chemical
properties of h-MOF with the C2H6/C2H4 selectivity. This
hybrid approach will further provide us with the guideline for
designing a suitable tool that will fill the gap between molecular
simulation and machine learning algorithms.

■ MODEL AND METHODOLOGY

To train and validate the machine learning algorithm, we used
the h-MOFs database created by the Snurr group, which is
available at https://www.materialsproject.org/porous/www.
materialsproject.org/porous/.24 The database consists of
137,953 h-MOFs. These MOFs were generated from a library
of building blocks. Further, the generatedMOFs were compared
with the experimental and energetically optimized structures.
The Forcite module of Materials Studio was used to optimize
the geometry of each MOF structure. The structural and
chemical descriptors are often correlated with the selectivity or
adsorption capacity of any porous material. Hence, we
calculated several structural and chemical descriptors to leverage
the machine learning model’s accuracy. The list of chemical and
structural properties in this work is tabulated in Table 1 and
Table 2, respectively. Zeo++,30 an open-source software, was
used to calculate all the structural descriptors. Also, it can
provide information about the regions which are accessible to
the adsorbed gas. The h-MOFs with zero accessible surface area
were removed from the dataset to avoid unnecessary time and
resources to test the materials that are the worst materials for gas
adsorption or separation study. After removing the h-MOF

having a 100% nonaccessible surface area, the machine learning
algorithm was used on the rest of the 115,302 h-MOF materials.
The equilibrium adsorption data of C2H6 and C2H4 in MOF

simulations were calculated using multicomponent grand-
canonical Monte Carlo (m-GCMC). 9224 h-MOF materials
(8% of the h-MOF dataset) were chosen as a training set. A
50:50 molar mixture of C2H6 and C2H4 was considered at 298 K
and 1 bar total pressure for the study. The Monte Carlo moves
consist of particle exchange (insertion/deletion), particle
translation, particle rotation, and particle identity exchange
which were used with probabilities 0.6, 0.15, 0.15, and 0.1,
respectively. Each Monte Carlo simulation was performed with
2000 cycles to reach the equilibrium states and another 5000
cycles to calculate the equilibrium adsorption capacity and
selectivity.
TheMOFs were modeled using the universal force field.31 On

the other hand, TraPPE32 force field was used to model ethane
and ethylene molecules. The Lennard-Jones (LJ) parameters
between the unlike atoms were calculated using Lorentz−
Berthelot mixing rules. An LJ potential cutoff distance of 12.0 Å
was used for all the simulations. The box length was twice the LJ
potential cutoff distance to satisfy the minimum image
convention.
In this study, we used the RF regression algorithm33 to predict

the C2H6/C2H4 selectivity. The scikit-learn library
34 was used to

utilize the RF regression algorithm. In the RF algorithm, we used
250 trees to make the forest. The permutation feature
importance model inspection technique was used to calculate
feature importance.33 An additional cross-validation analysis was
also performed using the shuffle split cross-validation strategy35

with an n_split value of 10. The training set in each split was
taken as 10% of the training dataset. In high-throughput
screening, we require to perform an optimum number of

Table 1. Chemical Descriptors of MOFs

descriptor description

hydrogen (H) number of hydrogen atoms per unit cell
carbon (C) number of carbon atoms per unit cell
nitrogen (N) number of nitrogen atoms per unit cell
oxygen (O) number of oxygen atoms per unit cell
fluorine (F) number of fluorine atoms per unit cell
chlorine (Cl) number of chlorine atoms per unit cell
bromine (Br) number of bromine atoms per unit cell
vanadium (V) number of vanadium atoms per unit cell
copper (Cu) number of copper atoms per unit cell
zinc (Zn) number of zinc atoms per unit cell
zirconium (Zr) number of zirconium atoms per unit cell
total degree of unsaturation [(C × 2) + 2 − H]/2
degree of unsaturation total degree of unsaturation/C
metallic percentage (number of metal atoms/C) × 100
oxygen-to-metal ratio [2 × O]/number of metal atoms
nitrogen-to-oxygen ratio N/O

Table 2. Structural Descriptors of MOFs

descriptor description

crystal density (ρ) mass of crystalline material per volume
accessible surface area (a) accessible surface area along pore wall
void fraction (ϵv) fractional of materials that is free volume
largest included sphere diameter
(Di)

largest sphere to fit inside the material

largest free sphere diameter (Df) largest sphere to percolate through
material
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simulations to maximize machine learning accuracy as well as to
limit the computational cost. Further, larger training set may not
improve the machine learning model accuracy significantly. We
have tested the machine learning models with a training dataset
of 6, 8, and 10% of the h-MOF dataset and compared the model
accuracy. As we increase the size of training set, the maximum
machine learning model accuracy was achieved when the
training data size is 8% of the h-MOF dataset. Further increase in
the training data size does not improve model accuracy. Hence,
8% of the h-MOFs was chosen as a training set.

■ RESULTS AND DISCUSSION
Molecular Screening. The significant parameter to

describe the efficiency of separation is the adsorption selectivity,
as shown in eq 1.

S
x x

y y

/

/C H /C H
C H C H

C H C H
2 6 2 4

2 6 2 4

2 6 2 4

=
(1)

Here, xi (i = C2H6, C2H4) is the mole fraction in the adsorbed
phase and yi is the mole fraction in the bulk phase (i.e., yC2H6

/

yC2H4
= 1.0 in our work). From the GCMC simulations, we

obtained the ethane uptake and ethane selectivity. A good MOF
will have high selectivity with high C2H6 uptake.
From Figure 1, we can see that a large amount of MOF has

good selectivity, but ethane uptake is less. A handful of MOFs
have a large volume of ethane uptake. The MOFs with the

selectivity less than 1.0 are ethylene-selective materials. As our
interest is to find the best MOF, which will have the highest
C2H6 selectivity, we should focus on the right top corner region
of Figure 1.
To evaluate the performance of RF model, R2 values were

calculated, which are shown in eq 2.

R
N S S
N S S

1
( )

( )
2

MOF true predict
2

MOF true mean
2

= −
∑ −

∑ − (2)

Here, NMOF, Strue, Spredict, and Smean represent the number of
MOFs taken in the RF model, simulated selectivity, predicted
selectivity, and average selectivity, respectively.
First, the RF model was used where chemical properties are

taken as descriptors. In this case, the RF score was low at around
0.36. Hence, the RF model with chemical properties only as
descriptors is not suitable to make predictions. Similarly, the RF
model was used only with structural properties. However, in this
case, the RF score improved significantly to 0.70. Furthermore,

Figure 1. Performance plot of training data (9224 h-MOFs). C2H6/
C2H4 selectivity against volumetric C2H6 uptake.

Figure 2. Average feature importance among the decision tree
regressors in the RF.

Figure 3. C2H6/C2H4 selectivity against VF.

Figure 4. Parity plot of simulated C2H6/C2H4 selectivity against
predicted C2H6/C2H4 selectivity.
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to improve the RF score, we used the combined structural and
chemical properties. The RF score was improved to 0.89 using
the shuffle split cross-validation approach. From the machine
learning perspective, this RF model can be applied to the rest of
the materials.
Also, we calculated the average feature importance among the

decision tree regressors in the RF model. The descriptor having
higher feature importance is more critical in improving the RF
model. From Figure 2, we can clearly come to the conclusion

that void fraction (VF) is by far the most important feature. VF
played a larger role in increasing the RF score in the RF model.
After VF, the number of vanadium atoms per unit cell, the largest
included sphere diameter (Di), and metallic percentage (mperc)
played an important role in prediction as well.
To find out the physical significance of the feature importance

and the model performance, we plotted the C2H6/C2H4
selectivity against the most important feature of this RF
model, that is, VF. From Figure 3, we can observe that there is
a strong correlation between the VF of MOF materials and
C2H6/C2H4 selectivity. As the VF increases, C2H6/C2H4
selectivity increases. However, after a certain value of VF,
selectivity starts decreasing gradually. Further, we tried to
observe the relationship between selectivity and Di. In this case,
the relationship between selectivity and Di is not strong enough.
Similarly, other descriptors have some correlation with the
ethane selectivity. Among those descriptors, some of the
correlations were inconclusive by visualization means. The
relationship of structural and chemical features with C2H6/C2H4
selectivity is given in the supplementary document.
Further, we tested the performance of the RF model on the

test dataset. We randomly chose 2000 MOF materials from the
test dataset and simulated them. Simultaneously, the RF model
was applied to the randomly chosen 2000 MOF materials. The
simulated C2H6/C2H4 selectivity was plotted against the
predicted C2H6/C2H4 selectivity, which is shown in Figure 4.
The 45° diagonal line across the plot signifies the equality
between the simulated selectivity and the predicted selectivity.
The root-mean-square error is 0.86.

Best Materials. The RF model was used to predict the
C2H6/C2H4 selectivity of the remaining h-MOF materials.

Figure 5. Top-performing h-MOFs at 298 K and 1 bar total pressure. Blue and green atoms represent ethane and ethylene, respectively.

Figure 6. C2H6/C2H4 selectivity comparison with previously reported
best-performing materials C2H6/C2H4 selectivity at 298 K and 1 bar
total pressure. Red and blue colored filled circles represent previously
reported best-performing materials and best-performing h-MOFs,
respectively.
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Subsequently, molecular simulations were performed on the
predicted best-performing materials. Among those materials,
only four h-MOF materials were found to have C2H6/C2H4
selectivity greater than 2.7, which are shown in Figure 5. In the
figures, the blue atoms and the green atoms represent ethane and
ethylene molecules, respectively. It is clearly seen that the
adsorption of gases occurs near the organic linkers. We
compared the selectivity of the best h-MOF materials with
existing nanoporous materials at 1 bar pressure and 298 K
temperature. The selectivity comparison is shown in Figure 6. It
is evident from the figure that only one material discovered by Li
et al.36 surpasses the performance of the materials identified in
this work.

The top four h-MOF systems were further simulated at
different pressures ranging from 0.1 to 1.0 bar to get the
adsorption isotherms of C2H6 and C2H4. From Figure 7a it is
clearly seen that, among the top four materials, NMGC-353295
has the best C2H6 adsorption uptake, that is, 55.06 cm

3/g at 298
K and 1 bar. The C2H6/C2H4 selectivity is higher at a lower
pressure for each h-MOF system. However, with increasing
pressure, the C2H6/C2H4 selectivity decreases for all top-
performing h-MOF systems.
Table 3 shows the interaction energy of secondary building

units (SBUs) of NMGC-353295 with C2H6 and C2H4 at 298 K
and 1 bar total pressure. The interaction energy suggests that the
C2H6 atoms are more favorable to achieve higher adsorption.
The energy contribution between the node and C2H6 and C2H4

is the lowest because of the limited space near the metal-
containing node. Among all the SBUs, linker-1 has themaximum
contribution because of a higher number of binding sites. The
energy interaction of SBUs with C2H6 and C2H4 of the top three
MOFs indicates its affinity toward C2H6 as well (details are
shown in the Supporting Information). Further, we calculated
the local density profile of C2H6 and C2H4 from SBUs, which is
shown in Figure 8. In each case, C2H6 density is found to be
higher than C2H4 density. The first peak suggests the primary
adsorption layer near the surface of SBUs, which is also in line
with the energy interaction data of SBU with C2H6 and C2H4.

Figure 7. (a) Adsorption isotherms of C2H6 (solid) and C2H4 (open) of top-performing h-MOFs. (b) Selectivity comparison of the top-performing h-
MOFs.

Table 3. Energy Contribution of the SBU with C2H6 and
C2H4 of NMGC-353295 at 298 K and 1 bar Total Pressure

Figure 8. Local density of C2H6 and C2H4 against the distance from the SBUs of NMGC-353295 at 298 K and 1 bar total pressure.
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■ CONCLUSIONS
In this study, we were able to correlate MOFs’ chemical and
structural properties with the C2H6 selectivity using the RF
algorithm. RF was modeled by utilizing the simulated C2H6
selectivity values of 8% of the h-MOF database. The RF model
with chemical or structural properties showed poor performance
in predicting the C2H6/C2H4 selectivity. However, the R

2 value
improves significantly to 0.89 when both the chemical and
structural properties were considered as features. The most
important feature to make the model successful was the VF of h-
MOFs.
Further, we were able to produce the adsorption isotherms of

C2H6 and C2H4 of the top four h-MOF materials. All MOFs
show affinity toward C2H6 gas molecules. Among the SBUs, the
metallic nodes show the least interaction energy with the C2H6
and C2H4. The organic linkers show the maximum affinity
toward C2H6 gas molecules compared to C2H4. Hence, the
systematic modification of organic linkers should be the next
objective to improve further the C2H6/C2H4 selectivity.
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