
 Potential drug candidates for SARS-CoV-2 using computational screening and 
enhanced sampling methods 

Sadanandam Namsani1$, Debabrata Pramanik2,$, Mohd Aamir Khan1,2, Sudip Roy*1 and Jayant Kumar 
Singh*1,2  

 
1Prescience Insilico Private Limited 

Old Madras Road, Bangalore 560049, India 
 

2Department of Chemical Engineering 
Indian Institute of Technology, Kanpur, India 

 
$ Same contribution  
 
*Corresponding authors:  Sudip Roy (sudip@prescience.in) and Jayant Kumar Singh 
(jayantks@iitk.ac.in) 

Abstract  
 
Here, we report new chemical entities that exhibit highly specific binding to the 3-chymotrypsin-like 
cysteine protease (3CLpro) present in the novel severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2). Because the viral 3CLpro protein controls coronavirus replication, 3CLpro is identified 
as a target for drug molecules. We implemented an enhanced sampling method in combination with 
molecular dynamics and docking to reduce the computational screening search space to four molecules 
that could be synthesized and tested against SARS-CoV-2. Our computational method is much more 
robust than any other method available for drug screening (e.g., docking) because of sampling of the 
free energy surface of the binding site of the protein (including the ligand) and use of explicit solvent. 
We have considered all possible interactions between all the atoms present in the protein, ligands, and 
water. Using high-performance computing with graphical processing units, we were able to perform a 
large number of simulations within a month and converge the results to the four most strongly bound 
ligands (based on free energy and other scores) from a set of 17 ligands with lower docking scores. 
Additionally, we have considered N3 and 13b α-ketoamide inhibitors as controls for which 
experimental crystal structures are available. Out of the top four ligands, PI-06 was found to have a 
higher screening score compared to the controls. Based on our results and analysis, we confidently 
claim that we have identified four potential ligands, out of which one ligand is the best choice based on 
free energy and the most promising candidate for further synthesis and testing against SARS-CoV-2.  



1. Introduction  
 
The current situation of the world is extraordinary due to the coronavirus disease 2019 (COVID-19) 
pandemic. COVID-19 is caused by a new pathogen, severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) virus (Coronaviridae: Betacoronavirus)1,2. Infection with the new pathogenic SARS-
CoV-2 can result in long-term reduction in lung function, arrhythmia, and death. This virus is found to 
have much stronger binding energy with the host cell than its predecessors and thus spreads more 
efficiently. Given the novelty of this virus and the global pandemic it has caused, there is an urgent 
need for drug candidates and vaccines to be developed as soon as possible. The current crisis is mainly 
due to the lack of any specific antiviral drugs that could function against SARS-CoV-2 as well as a lack 
of preparedness to find and produce a new vaccine. To mitigate the risks posed by viruses, including 
SARS-CoV-2, it is imperative that research efforts for the development of new antiviral agents targeting 
this virus be pursued with renewed energy.  
 
The scientific world is responding to the COVID-19 pandemic via three major innovation paths. The 
most focused research currently in progress is the development of vaccines and clinical trials of existing 
FDA-approved drugs for other relevant diseases and developing new chemical entities (NCEs). As the 
repurposing of drugs may fail, developing NCEs is also essential.  
 
The goal of NCEs research is to find the target proteins, i.e., those proteins that are envisaged as 
moderators of functions that help the virus propagate in the human body. NCEs are designed to inhibit 
these proteins either on the viruses themselves or in human cells, in order to stop the biological pathways 
and control the disease. The ab initio design of NCEs begins with mining the knowledge related to the 
chemical space from large sets of compounds available in chemical databases. This virtually unlimited 
chemical data is used to develop NCEs, and the developed NCES are then subjected to high-throughput 
computational screening3 to identify those entities that may have a therapeutic effect on the coronavirus.  
The main protease (Mpro 3CLpro) of coronavirus is an attractive drug target because of its function in 
processing the polyproteins that are translated from the viral RNA. Mpro is a key CoV enzyme that 
mediates viral replication and transcription. Mpro has cleavage-site specificity similar to that of 
picornavirus 3C protease (3C pro). Therefore, it is also known as 3C or 3C-like main protease (3CL 
Mpro). Jin et al. recently reported X-ray structures4 of the SARS-CoV-2 Mpro and its complex with an 
N3 inhibitor. The crystal structure of SARS-CoV-2 main protease in complex with an inhibitor N3 was 
reported4 at RCSB Protein Data Bank as entry 6LU7. Liu et al., in a subsequent publication, predicted 
a list of commercial medicines that might work as inhibitors5 of 2019-nCoV. Zhang et al.6 recently 
reported an X-ray crystal structure complexed with 13b α-ketoamide (PDB ID: 6Y2G). The 13-b 
ketoamide exhibits increased solubility in plasma and reduced binding with plasma proteins compared 
to other peptidomimetic α-ketoamides7. It has also been shown that the 13-b α-ketoamide enhanced 
antiviral activity compared to other ketoamides. Walls et al. recently showed that SARS-CoV-2 S uses 
ACE2, a membrane-associated protein, to enter human cells 8. The SARS-CoV-2 S and SARS-CoV S 
(SARS coronavirus identified in 2003) binding domains were found to exhibit similar affinities6 to bind 
with the receptor, ACE2 human protein. They found that the SARS-CoV-2 S glycoprotein uses a furin 
cleavage site at the boundary between the S1/S2 subunits, which is processed during biogenesis, and 
this sets the virus SARS-CoV-2 apart from SARS-CoV and SARS-related CoVs. They reported a cryo-
EM structure of the SARS-CoV-2 S ectodomain trimer, which is another hotspot for designing vaccines 
and inhibitors. 
Bung et al. recently published9 their initial work on de novo design of NCEs for SARS-CoV-2, targeting 
the 3CLpro protein using deep neural-network (DNL)-based generative and predictive methods for in 
silico design of NCEs. They trained the DNL model using ~1.6 million small molecules available in 



the ChEMBL database10. Subsequently, based on various physicochemical properties such as drug 
likeness11 and synthetic accessibility12 to filter the designed NCEs. Finally, these filtered small 
molecules were screened and ranked using the virtual screening scores obtained by docking with 
3CLpro using AutoDock Vina13. They docked 3,960 molecules and reported a final set of 31 high-
potential9 (to qualify as drug candidates) NCE molecules with virtual screening scores between -8.3 
and -7.5. The highest virtual screening score they reported was -9.1 and the highest Tanimoto 
coefficient14 with the existing protease inhibitors among the top 15 molecules was 0.90.  
 
While virtual screening tools have become popular, the limitations of methods such as docking with 
different variations in methodologies are well-established in the literature 15,16. The target ligand 
docking often fails to produce or identify the correct ligands (NCEs) with high specificity towards the 
target. Failure is caused by multiple factors, such as lack of proper sampling of the binding site, degree 
of flexibility of the protein (change of conformation of protein due to binding of the ligand), 
nonexistence of solvent (i.e., the solvent-ligand interaction) in the model, and finally, results in the 
definition of the scoring function with missing entropic contributions. Therefore, docking is often used 
for qualitative estimation of the chemical space of the target, and, subsequently, medicinal chemists 
intuitively design scaffolds and synthesize large numbers of molecules to form a chemical library. This 
library of molecules is then tested in biological assays to further screen for better efficacy.   
 
With the current challenges in mind, we propose a robust methodology to address some of the issues 
mentioned above and reduce the subset of NCEs for further synthesis and testing. Our methodology is 
to identify the set of ligands with high specificity using a large-scale all-atom molecular simulation 
followed by enhanced free-energy methods on the target-ligand complexes. In this method, we used 
molecular docking to select a set of chemical entities that showed significant interaction (high score) 
with the protein. These molecules are then subjected to molecular dynamics simulations with water as 
the explicit solvent. Solvation of molecules in water (or any other solvent) is critical for identifying the 
ligands that could bind at the binding site of the protein with high stability and not become solvated in 
water. Molecular dynamics (MD) simulations are therefore used as an additional filter to identify 
ligands with high stability. The stable structures (i.e., protein-ligand bond state in water) identified from 
the MD simulations were further used for enhanced free-energy sampling. Since entropy plays an 
important role in the specificity of binding, quantitative estimation of free energy is essential for better 
comparative binding specificity among various ligands interacting with proteins. In addition, defining 
a score associated with the binding of these ligands (chemical entities) is important to choose the best 
set of NCEs as potential drug candidates.  
 
In this work, we have considered the final molecules reported by Bung et al.7 for enhanced sampling 
using the methodology described above. We have selected molecules that showed higher binding 
affinities toward the protein. In addition, we have also considered a few molecules that are very similar 
to darunavir (Tanimoto similarity of 0.91 and 0.90). Darunavir is currently in clinical trials for COVID-
19 (ClinicalTrials.gov Identifier: NCT04252274). As controls, we performed additional simulations for 
N3 and 13b α-ketoamide inhibitors with 3CLpro. The experimental crystal structures of both inhibitors 
with protease are available4, 6, and these are considered as the starting configurations for MD simulations 
and subsequently enhanced sampling simulations. These existing crystal structure-based inhibitor data 
are used as controls to compare the performance of the ligands studied in this work. The details of all 
ligand structures (in 2D and geometry-optimized 3D) are given in Table 1. The computational details 
that, to the best of our knowledge, are novel for selecting NCEs for SARS-CoV-2 are described in 
section 2 of the paper. In section 3, we provide the results along with discussion.  



2. Computational Method  
In this work, we have used a combination of quantum chemicals calculations to optimize the structures 
of ligands (Table 1), molecular docking at the binding site of the protein, and all-atom molecular 
dynamics (MD) of protein-ligand complexes in water to determine the stability of the complex, and 
enhanced free energy sampling for final identification of potential drug molecules. A detailed 
simulation protocol is described here.  
 
The geometry optimizations of all the ligands (listed in Table 1) were performed using a semi-empirical 
method at the PM6 level, followed by geometry optimization using density functional theory (DFT) 
with the M06 functional and 6-311g (d,p) basis set. To account for the bulk solvent effects, the PCM 
method is used. Further, the partial atomic charges for the ligands are computed by fitting the 
electrostatic potential using the CHELPG method as implemented in the Gaussian09 code17. These 
charges are computed for the optimized structures using a single point calculation at the DFT with the 
M06 functional with 6-311g (d,p) basis set and water as the solvent.  
 
All the ligand structures used in this study were taken from the work of Bung et al.9, in which the 
authors used parameters such as drug likeliness and toxicity to filter the molecules. They have used 
deep neural network-based generative and predictive methods for in silico design of NCEs. They used 
a dataset of ~1.6 million small molecules from the ChEMBL database to train the DNL model. The 
DNL model and filtration method are explained in detail in their paper. Finally, these filtered small 
molecules were docked using AutoDock Vina to the energy-minimized 3CLpro structure (PDB ID: 
6LU7) and ranked based on their virtual screening scores. They docked 3960 molecules and obtained 
1333 small molecules with virtual screening scores below -7.0. In this paper, Bung et al. reported 31 
final high potential (to qualify as drug candidates) NCE molecules with virtual screening scores 
between -8.3 and -7.5. Of these 31, they refer to 16 molecules that are already FDA-approved drugs. 
The pharmacokinetics and toxicities of the considered ligands are discussed in the article by Bung et 
al.  
We selected the list of ligands from that study to perform our enhanced sampling calculations to screen 
further and select the best candidates. To prepare the docking structures, we used the crystal structure 
of protease (PDB entry 6LU7, Jin et al.4) with an N3 inhibitor. We removed the N3 inhibitor from the 
crystal structure and used the same binding site (residues HIS41 and CYS145) for docking the ligands. 
A 3D grid of 60×60×60 Å is used around the active binding site of the protease by taking the binding 
site centroid as a grid center. The grid map was created with a spacing of 0.375 Å. All the ligands were 
then placed in the protease binding site to perform docking calculations and obtain a bound form of 
protease and ligands. 
 
The virtual screening scores for binding were generated through docking to determine the affinity of all 
the ligands, with 3CL protease. In general, docking involves finding the optimal binding between 
protein and ligand. To obtain this optimal binding score, a ligand conformational search is performed 
around the binding sites. Here, a genetic algorithm-based conformational search was employed to find 
the lowest energy conformation of the ligand. The ligand conformational search is carried out by 
creating a grid around the binding site of the protein. The binding site of 3CLpro is already known and 
is reported to the HIS-41 and CYS-148 protein amino acid residues cavity4. The docking of ligands and 
proteins was conducted using Autodock418 software. The docking was carried out using the Lamarckian 
genetic algorithm (LGA), and a total of 100 GA-LA hybrid runs were used to perform the 
conformational search for the ligand. Furthermore, the lowest energy protein-ligand cluster was used to 
repeat the docking twice, and the consistency of the results were combined to obtain the best score. All 
docking calculations were performed using the same set of parameters. 



 
The lowest energy docked complexes, the protein-ligand systems obtained from docking, were used to 
perform MD simulations. The protein was modeled using the CHARMM27 force-field19 parameters. 
The CHARMM27 force field was employed for all the ligands, and the force-field parameters were 
generated using SwissParam20. The ligand partial atomic charges were computed by fitting the 
electrostatic potential using the CHELPG method21 as implemented in the Gaussian09 code. The 
protein-ligand systems were solvated in water and equilibrated using MD simulations at room 
temperature. The systems were first equilibrated using an NVT ensemble at 300 K for 0.5 ns and 
extended to the NPT ensemble at 300 K and 1 atm for another 1 ns. The temperature and pressure during 
the simulations were maintained using a velocity rescaling thermostat and Parrinello-Rahman barostat, 
respectively. A time step of 2 fs was used to integrate the equation of motion, and a non-bonded cutoff 
of 10 Å was used to perform the MD simulations. These simulations were used to understand the 
stability of the interaction of the ligand with respect to the protein binding site in explicit water. We 
quantified the interactions between the amino acids in the binding pocket and the ligand using hydrogen 
bond analysis. All MD simulations were performed using the GROMACS-5.1.4 simulation package22,23. 
Further, the equilibrated structure obtained from the 1ns MD simulations was used to perform the free 
energy analysis.  
 
Since protein-ligand systems are complex in nature, exploring various important quantities such as 
thermodynamics, kinetics, and microscopic description at the all-atom level, remain a challenge owing 
to the length scales of the systems and the time scales involved in processes such as dissociation or 
association24,25,26 of the ligand from/to the protein binding pocket, etc. The available computational 
resources are generally not sufficient to address these types of complexes where sampling is very 
important through all-atom descriptions with brute force MD. Therefore, here we have performed 
enhanced sampling using metadynamics27 (metaD) and its variant well-tempered metadynamics26 (wt-
metaD) using Plumed 2.3.028 patched with MD engine GROMACS 5.1.4. Free energy perturbation and 
thermodynamic integration methods are theoretically rigorous and computationally expensive. These 
methods produce very accurate and reliable free energy surfaces preserving entropic and enthalpic 
contributions for all-atom systems. However, large complex systems, for example, protein-protein 
binding, are often difficult to converge mainly because of the large number of collective variables and 
computational resources. On the other hand, the molecular mechanics Poisson-Boltzmann surface area 
(MMPBSA) uses approximations to calculate enthalpic and entropic contributions using implicit 
continuum solvent models. Therefore, there is less accuracy in comparison to free energy perturbation 
methods; however, this method can be used for more complex systems with proper approximations28. 
On the other hand, the enhanced sampling-based method metadynamics developed by Laio et al.27, is 
widely applied from simple to complex systems in a variety of fields. In a metadynamics simulation, a 
time-dependent bias is added to the system along some suitably chosen reaction coordinate(s) such that 
the deposited bias will eventually push the complex away from its minimum energy state; otherwise, 
the system would have generally been trapped for a sufficiently long time. This method is insensitive 
to the choice of reaction coordinates. A crude reaction coordinate can bias the system and help the 
system escape from its minima within a short time, providing a qualitative free energy surface (FES). 
In addition, it is not very sensitive to the precise choice of the biasing parameters except in instances 
where these parameters are chosen to be very high or very low. In this method, a history-dependent bias 
is added, which prevents the system from revisiting those regions of the phase space that are already 
visited. Thus, it is efficient and computationally less expensive than other methods. In addition, in 
comparison to MMPBSA, we performed all-atom simulations in explicit solvent medium including the 
dynamics of the solvent, solute, and ions.  



 
In our metadynamics simulations, we added a bias V(s,t) in the form of Gaussians with every 500 steps 
(1 ps) deposition stride, with a Gaussian hill-height of 2.0 kJ/mol, width of(𝜎) 0.1 nm, bias factor of 
15, and temperature (T) of 300 K. Once the system converges, free energy F(s) (Eq. 1)28 can be extracted 
by adding the deposited hills along the biased reaction coordinates. In a wt-metaD, the amplitude of the 
bias is tuned such that the system converges smoothly. Here, we used a tempering factor 𝛥T to tune the 
height of the hills and thus we achieved smooth convergence of the free energy landscape.   
 
The wt-metaD simulations derived from the MD equilibrated structure as starting configurations. Since 
the association of a ligand from aqueous medium to the binding site in protein is an entropy-driven 
process and a much slower process in comparison to the dissociation of the ligand from the binding 
site, we mainly focused on the dissociation of ligands (Figure S2) in enhanced sampling simulations.  
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𝑉(𝑠, 𝑡) 	+ 	𝐶(𝑡)     (1) 
 
Because we are mainly interested in the dissociation of the ligand from the binding site, we considered 
the center of mass distance between the heavy atoms in the ligands and the protein backbone in the 
vicinity of the binding pocket (Figure. S2) as the reaction coordinates. We performed 20 independent 
simulations for each ligand to obtain better sampling and statistically reliable results.  
 
Because a strong binding pose will be more stable, its root-mean-square deviation (RMSD) will be 
lower. Therefore, high RMSD values can be used as indicators of poor binding pose, and lower RMSD 
indicates a stable binding pose. Hence, to determine the top binding ligands according to their binding 
specificity, we performed wt-metaD simulations using aligned RMSD as the reaction coordinate. We 
chose the RMSD for the heavy atoms of the ligands and protein backbone, as shown in Figure S2. One 
important thing to mention here is that in our RMSD metadynamics run, we started from the 
configuration corresponding to the minimum free energy value of the FES profile along the reaction 
coordinate of the center of mass distance (d). We performed 30 independent wt-metaD simulations with 
RMSD as the reaction coordinate for each ligand, with each run extending up to 2 ns. As described 
here, we performed several independent short metadynamics simulations with RMSD as the reaction 
coordinate. Therefore, this is similar to performing a much longer unbiased MD simulation where the 
starting structure of the ligand-protein complex could overcome the local barriers and reach a global 
minimum. Therefore, these independent trajectories were used to evaluate the stability that was 
translated into scores for the ligand-protein complexes. The analysis (scoring) methods from these 
trajectories are described along with the results and discussion. 

3. Results and Discussion  
The protein-ligand docking scores obtained from this study are shown in Table 2. The docking trend 
was found to be in qualitative agreement with the results obtained from Autodock Vina11. However, the 
absolute scores obtained from our simulations are different from those reported using Autodock Vina, 
owing to the differences in the force fields used in Autodock 4 and Vina. The lowest energy docked 
complexes were examined to determine the ligand location with respect to the protein binding site. The 
PI-06 ligand was found to exhibit a high binding affinity with the protein. Among the 17 ligands, PI-
04, PI-06, PI-10, and PI-12 ligands were found to exhibit higher binding scores with the protein. We 
also performed docking for N3 and 13b with 3CLpro and present the scores in Table 2. The binding 
affinity of the top four ligands was found to be higher than that of the control inhibitors, N3 and 13b. 
The binding energies are found to be -8.20 kcal/mol and -8.28 kcal/mol for N3 and 13b, respectively. 



The rigid docking-based binding energies are -6.74 kcal/mol and -9.07 kcal/mol for N3 and 13b 
respectively. All ligands considered in this study were found to be in the binding pocket and interact 
with HIS41 and CYS 148. The best docking poses of the four ligands obtained from docking are shown 
in Figure 1. The ligand position clearly indicates that the ligand has a tendency to stay at the binding 
site of the protein. 
 
The docked poses of the 13 other ligands are shown in Figure S1, which shows that the ligands tend to 
stay in the binding pocket. To further understand the docked complex stability and the interactions of 
the ligand with protein in the binding pocket, the best-docked complexes were solvated with water, and 
MD simulations were performed.  
 
In the case of docking, the protein is considered to be rigid, and a conformational search is carried out 
in the gas phase. It is very difficult to presume the docked complex as stable. Docking is mainly useful 
to eliminate the ligands that are very improbable. Hence, it is very important to perform all-atom MD 
simulations to assess the stability of the docked complex. Thus, the docked complexes with all-atom 
description were simulated in the presence of a solvent. The aqueous solvent environment plays an 
important role in the stability of the docked complex because of the solvation of ligands and the 
dynamics of the solvated protein. 
 
The docked complexes were used as initial configurations to perform the MD simulations. These 
systems are equilibrated in water, and simulations are performed at room temperature and 1 atm 
pressure. The last 0.5 ns trajectory data obtained from NPT ensemble simulations were used to compute 
the RMSD for the binding site and ligand to assess the stability (see Table S1) of the protein-ligand 
complexes and to validate the docking pose. The RMSD values were found to be less than 0.2 nm for 
all the protein-ligand complexes. This clearly shows that the protein-ligand systems are stable, and the 
ligands tend to be in the binding pocket. 
 
Furthermore, to elucidate the main interactions of the ligand with the protein amino acids in the binding 
pocket, we analyzed different hydrogen bonding scenarios. The interacting groups of proteins and 
ligands through hydrogen bonds are listed in Table 2. Almost all the ligands interact with the -NH2 
groups of the protein. The most common interacting amino acids in the binding pocket are THR26, 
ASN142, and GLN189. The PI-04, PI-06, PI-08, PI-10, PI-11, PI-13, and PI-17 ligands are found to be 
interacting with a greater number of residues in the binding pocket than the other ligands. However, 
this observation is only based on the hydrogen bonding performed on the structure obtained from 
equilibrium NPT simulations, and it is highly probable that ligands might show other predominant 
interactions. To determine the contribution from all possible interactions, one needs to explore the 
complete free energy surface associated with ligand-protein binding. 
  
The entropic contributions associated with the solvent and the conformational changes of the protein-
ligand complexes are not accounted for in the docking. In the case of MD simulation, the sampling 
around the binding site of the protein is also not sufficient, as conformations might get stuck in local 
minima. Therefore, enhanced sampling of ligand binding and analysis of changes in conformation of 
ligands is important to ascertain the most stable (bound) protein-ligand complex from the set of 17 
complexes reported here. The equilibrium structure obtained from MD simulations was used as the 
starting configuration in the enhanced wt-metaD simulations. The average free energy of dissociation 
for all the ligands obtained from the wt-metD simulations is reported in Table 2, and the corresponding 
free energy profiles are shown in Figure 2 (a). We also performed enhanced sampling simulations for 
N3 and 13b ketoamide, and the obtained FESs are shown in Figure 2(a). Here, the average free energy 



values were obtained from 20 independent dissociation simulations for each ligand to obtain better 
sampling and statistically reliable results. The free energy values are found to be in the range of − -
13.40 to -2.83 kcal/mol for all the ligands (see Table 2). The PI-06, PI-08, PI-11, and PI-14 ligands 
were found to exhibit higher energy barriers in the same order compared to the other ligands. The 
maximum free energy of binding is -13.40 kcal/mol, which is observed for the PI-06 ligand. These four 
ligands clearly outperformed all other ligands. However, PI-06 was the best among the four ligands 
with -4.63 kcal/mol lower free energy than the second-best ligand PI-14. To better understand the free 
energy behavior, the profiles for these four ligands are shown separately in Figure 2 (b). To compare 
the binding affinities with the top 4 ligands, we have also shown the FESs for N3 and 13b (control 
inhibitors) in Figure 2(b). As can be seen from Figure 2(b), our top four ligands show comparable 
binding energies to control ligand 13b. The free energy surfaces displayed in Figure 2(a) and (b) show 
a complex and rugged free energy landscape with multiple local minima and one global minimum, that 
is, at the binding site. This behavior represents multiple interactions between the ligands and residues 
of the binding site.  
 
As the solvent effects are not included in the docking, the ligand-protein interactions are expected to be 
different from the wt-metD simulations, in which the protein-ligand system is solvated in water. Thus, 
after performing wt-metaD simulations, the protein-ligand complex configuration corresponding to the 
free energy minimum position (Figure 2) was superimposed with the complex obtained from docking. 
We present in Figure 3 the superimposed structures of the FES minimum configuration and the docked 
complex for the PI-06 ligand. In wt-metD, the ligand position was found to be in the binding pocket 
marginally away from residues HIS41 and CYS148. The ligand in the docked pose is shown as red 
sticks, whereas the FES minimum pose is shown as green sticks. In addition, to assess the binding 
landscape of the ligand-protein and to validate the binding pose from the FES, the RMSD based free 
energy was computed. 
 
To understand the FES of the binding poses of the ligands in detail, we looked into the FES as a function 
of RMSD (reaction coordinate) as described in the computational method section. For poorly bound 
ligands, the RMSD (with respect to the lowest energy binding structure obtained from FES described 
in Figure 2) is expected to be higher than that of the strongly bound structures. Therefore, RMSD can 
be attributed as a measure of the binding between the ligands and proteins. Thus, we took the minimum 
free energy configuration from Figure 2 as the starting structure for the wt-metaD simulations and 
RSMD as the reaction coordinates. In Figure 4(a), we present the free energy as a function of the aligned 
RMSD for all ligands. Here, each FES is averaged over 30 independent runs. From the FES of Figure 
4 (a), it is evident that there are stable conformations for all the ligands below 0.2 nm of RMSD. 
Therefore, there is a global minimum for all the ligands close to the starting conformation, and almost 
no other local or global minima were observed. However, there some metastable states exist after 0.3 
nm RMSD. Therefore, to quantify the binding of ligands to the protein, we computed the probability of 
the ligand-protein complex within 0.2 nm of RMSD from all trajectories we obtained from FES 
calculations with RMSD as the reaction coordinate. The trajectories (RMSD as a function of time) for 
the top four ligand-protein complexes, including N3 and 13b, are shown in Figure 5 to elucidate the 
stability of the ligands in the binding site (see Figure S3 for all the ligands). In Figure 4 (b), we have 
depicted the distribution of the probability of RMSD for these six ligands. For ligands PI-06, PI-08, PI-
11, N3, and 13b, we observed sharp peaks in the distribution of probability values for RMSD below 0.2 
nm, and for PI-14 it is slightly lower. This signifies that PI-06, PI-08, PI-11, and PI-14 ligands are 
strongly bound at the binding site of the protein, and the binding energies of PI-06, PI-08, and PI-11 
are comparable to those of the control ligand 13b. However, the binding energy of PI-14 means that 
this ligand emerged as the best among all the ligands, including the controls. The probability of the 



RMSD value below 0.2 nm could, therefore, be an indicator of binding. Thus, a higher probability 
would indicate stronger bonding. These values are reported in Table 2 along with the free energy change 
for all the ligands.   
 
In a similar way, to find the stability of ligand-protein complexes, we calculated the average RMSD (s) 
from all the independent biased trajectories using the following equation:  
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     (2) 

 
Here, F(s) is the energy associated with the RMSD. A higher estimate of the average or 
thermodynamically preferred RMSD can be considered an indication of poor instability of the complex. 
Thus, the higher the value (score) the lowers the stability and vice-a-versa. All these quantitative 
estimations of the stability (score) for each ligand using Eq. 2 are reported in Table 2.  
 
We calculated two types of scores (probability of RMSD below 0.2 nm and average RMSD as per Eq. 
2) from the biased trajectories obtained from the metadynamics simulations. In Figure 6 we present the 
correlation of these two types of scores with the FESs for all ligands. It is evident that for the ligands 
with a lower free energy barrier for dissociation (from the binding site), the average RMSD is lower 
and the probability of RMSD (below 0.2) is higher. These distinct correlations confirm that our method 
could well segregate ligands that show higher stability than others. We used docking structures with 
similar docking scores and separated the four ligands that bind 3CLpro with much higher affinity. These 
ligands are in the order PI-06 > PI-14 > PI-11 > PI-08 according to the free energy barrier and average 
RSMD. However, if we consider the probability of RMSD values less than 0.2 nm, then the resulting 
order is PI-06 > PI-08 > PI-11 > PI-14. From all these scores, it is evident that PI-06 has a much higher 
probability compared to the other three ligands to bind the protein.  
 
We have shown the FES of dissociation in Figure 2. We observed that the free energy profile for PI-06 
has a much higher energy of solvation (at the dissociated state) than the other ligands. Furthermore, in 
the case of all the ligands, there were local minima present along with one global minimum in the free 
energy landscape. To understand this feature, we looked into the dissociation trajectory for the PI-06 
ligand (see Figure 7). We found full dissociation of the ligand from the binding pocket to the aqueous 
environment. Initially, the ligand is at the binding pocket and explores various conformations (red wire 
representation). Due to the applied bias along the center of mass-center of mass distance (d), the ligand 
gradually escapes from the minimum of the potential well and explores other regions of the phase space 
(gray wire representation). Later, the ligand fully escaped from the binding pocket to the solvent (blue 
wire). As can be seen from the trajectory, the ligand strongly interacts with the protein backbone near 
the vicinity of the binding pocket, which gives rise to these local features in the free energy landscape, 
as shown in Figure 7. 
 
We further analyzed the hydrogen bonds (Hbond) between all ligand-protein systems from unbiased 
MD simulations starting with the minimum free energy conformation obtained from FES. From these 
unbiased MD trajectories, we calculated Hbonds as a function of time using a distance cutoff of 0.35 
nm between the donor and acceptor, and an angle cutoff of 30 ° for the hydrogen-donor-acceptor. In 
Figure 8, we show the probability distribution of the Hbonds with the number of Hbonds formed for 
the top four ligands, including N3 and 13b, as per the free energy barrier. PI-06 has a higher probability 
of forming two and three Hbonds in comparison with the other three ligands (see Figure S4 for all the 
ligands). The calculated weighted average of the Hbonds for the top 4 ligands elucidates the same order 



of PI-06 > PI-08 > PI-11 > PI-14, as observed from the RMSD probability values mentioned above. We 
also computed the hydrogen bond lifetime correlation functions, which are depicted in Figure 8(b), for 
the top four ligands, including N3 and 13b. The correlation function for PI-06 was found to exhibit a 
very slow decay, that is, a higher Hbond lifetime compared to other ligands. We presented the Hbond 
lifetime correlation function for all other ligands in Figure S5 of the supporting information. The Hbond 
analysis clearly shows that in the case of PI-06, the contribution of hydrogen bond interactions is the 
highest among all other ligands that stabilize the protein-ligand complex.  
 

4. Conclusion  
In this study, we performed large-scale all-atom molecular dynamics simulations with enhanced 
sampling for ligands that bind to the 3CL protease of SARS-CoV-2. These calculations are robust and 
are modeled similarly to the experimental system by incorporating explicit solvent molecules and 
considering all-atom molecular models and interactions. We considered a set of 17 ligands with lower 
virtual screening scores (for 3CLpro of SARS-CoV-2) and high Tanimoto score with respect to known 
HIV inhibitors, for example, currently FDA-approved drugs darunavir, lopinavir, ritonavir, indinavir, 
saquinavir, and ASC09. Our method could distinctively isolate these 17 ligands into four possible NCEs 
and could even identify the best compound with very high confidence. In addition, we validated our 
method by performing similar calculations for N3 and 13b α-ketoamide inhibitors as controls. Upon 
successful synthesis and testing, these four NCEs are expected to have a much higher probability of 
success in clinical trials.   
 
The method described in this work is scalable for multiple targets (proteins from the same family with 
similarities) of ligand binding that could result in a much smaller subset of NCEs compared to docking 
or any other drug screening method. The method demonstrated here is envisaged to significantly reduce 
the time of drug design and discovery.  
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collective variable for metadynamics simulation, time evaluation of RMSD for biased trajectories where 
RSMD of heavy atoms were considered as collective variables, normalized probability distribution of 
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Table 1. Code-name, chemical structures of the ligands and QM Density Functional Theory (DFT) 
optimized structures. The control inhibitor structures, N3 and 13b, are also included. 
 

Code Name 2D structure 3D DFT optimized structure 

PI-01 

 
 

PI-02 

 

 

PI-03 

 
 

PI-04 

 

 

PI-05 

 

 

PI-06 

 
 



PI-07 

 

 

PI-08 

 

 

PI-09 

 

 

PI-10 

 

 

PI-11 

 
 

PI-12 

 

 



PI-13 

 

 

PI-14 

 
 

PI-15 

  

PI-16 

  

PI-17 

 

 

N3 

  



13b α-ketoamide 

 

 
 
  



Table 2 The docking score, free energies for dissociation, average RMSD values, probabilities (for 
RMSD < 0.2 nm), for all ligands. The interaction residues and functional groups the protein with the 
ligands.  

Ligand 
code 
name 

Docking 
score 

Free 
Energy 
(kcal/mol) 

Average 
RMSD (nm) 
as per Eq. 2 

Probability of 
RMSD(RMS
D < 0.2 nm) 

Interacting 
Residue  

Residue-ligand 
interacting 
groups  

PI-01 -8.51 -3.83 
(0.609)  

0.359 (0.068) 0.361 THR26 OH-C=O 

PI-02 -9.13 -4.49 
(0.451) 

0.401 (0.072) 0.254 THR24 
ASN142 
GLN189 

OH-C=O 
NH2-C=O 
NH2-C=O 

PI-03 -9.43 -3.36 
(0.598) 

0.344 (0.058) 0.472  HIS163 
HIS16 

NH2-C=0 
NH2-OH 

PI-04 -11.56 -4.78 
(0.392) 

0.207 (0.035) 0.594 GLY143 
SER144 
ASN142 
GLN189 

NH2-C=0 
NH2-C=0 
O-OH 
N-OH 

PI-05 -10.85 -4.29 
(0.574) 

0.214 (0.028) 0.443 ASN142 NH2-N (-SO2) 

PI-06 -11.92 -13.40 
(0.430) 

0.143 (0.004) 0.842 THR26 
ASN142 
GLY143 
CYS148 
GLY143 

NH2-O 
NH2-C=O; O-
NH2 
NH2-N(-SO2) 
NH2-C=O 
NH2-O 

PI-07 -10.40 -3.57 
(0.492) 

0.424 (0.078) 0.418 HIS41 
ASN142 
GLU166 

NH2-C=O 
NH2-O 
O-NH 

PI-08 -9.50 -6.65 
(0.411) 

0.227 (0.051) 0.722 THR26 
ASN119 
ASN142 
GLY143 
LEU27 

NH2-O=C 
NH2-O=C 
NH2-O 
NH2-N 
O-NH (-NC=O) 

PI-09 -10.30 -3.17 
(0.516)  

0.395 (0.081) 0.453 THR26 
SER46 
HIS143 

NH2-O=C 
OH-O=C 
NH2-O 

PI-10 -11.64 -3.07 
(0.363) 

0.394 (0.068) 0.317 THR26 
SER46 
ASN142 

NH2-O=C 
OH-O=C 
NH2-OH 



GLN189 
SER46 

NH2-N 
NH2-OH 

PI-11 -10.54 -8.74 
(0.392) 

0.174 (0.016) 0.719 HIS41 
ASN142 
GLN189 

NH2-O=C 
NH2-OH 
NH2-O=C; 
NH2-OH 

PI-12 -10.94 -6.43 
(0.466) 

0.214 (0.036) 0.522 HIS41 NH2-O=C 

PI-13 -10.22 -6.20 
(0.406)  

0.260 (0.055) 0.666 ASN142 
GLY143 
GLU166 
CYS148 

NH2-O=C 
NH2-O=C 
NH2-OH 
NH2-O=C 

PI-14 -10.64 -8.77 
(0.334) 

0.160 (0.005) 0.642 ASN142 
GLU166 
GLN189 

NH2-O=C 
NH2-O=C 
O-OH 

PI-15 -9.68 -3.77 
(0.399)  

0.217 (0.030) 0.384 GLY143 
GLU166 
CYS148 

NH2-O 
NH2-O 
NH2-O 

PI-16 -9.52 -6.26 
(0.456) 

0.198 (0.025) 0.604 ASN142 
GLU166 

NH2-N 
NH2-O=C 

PI-17 -9.04 -2.83 
(0.514) 

0.426 (0.067) 0.156 ASN142 
GLY143 
GLN189 
SER46 

NH2-O=C 
NH2-O=C 
NH2-N; NH2-
O;  NH2-O=C 
O-NH 

N3 -7.75 -6.91 
(0.478) 

0.244 (0.086) 0.66 HIS41 
ASN142 
GLY143 
SER144 
HIS172 
GLU166 
GLN189 

NH2-OR 
NH2-O=C 
NH2-OR 
NH2-O=C 
NH2-N 
NH2-O=C 
NH2-OR 

13b -8.54 -8.15 
(0.382) 

0.171 (0.008) 0.57 HIS41 
ASN142 
 
GLY143 
CYS145 
GLU166 
GLN189 
HIS164 

NH2-O=C 
NH2-OR; O-
NH; N-NH2 
NH2-O=C 
NH2-O=C 
NH2-O=C 
NH2-O=C 
O-OH 



THR26 O-NH 

 
 
 

 
Figure 1 The best docking poses of lowest binding energy 4 ligands with protein (a) PI-04 (b) PI-06 
(c) PI-10 and (d) PI-12 are shown here. The active site of the protein (HIS41 and CYS148) is shown as 
red sticks. The stabilizing polar interaction contacts are shown in yellow dotted lines in all the figures.   
  



 

 
Figure 2: Average free energy with center of mass - center of mass distance (d) for dissociation of the 
ligands from the protein binding pocket. (a) Free energies for all the ligands. (b) Free energies for the 
top four ligands including N3 and 13b. For each ligand the errors in free energies are reported in Table 
2. 
  



 
 

 
 
Figure 3: The zoom-in view for the superimposed structure of the PI-06 ligand docked pose and stable 
pose from the free energy minima. The Ligand in the docked pose is shown as red sticks and that of the 
free energy minimum structure is shown as green sticks. 
  



 
 
Figure 4: (a) Average free energy with aligned RMSD for all ligands. (b) The number count 
distributions for the probability to find a system within 0.2 nm of RMSD.  
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Figure 5: Time evolution of the RMSD for top four ligands, (a) PI-06, (b) PI-08, (c) PI-11 (d) PI-14, 
(e) N3 and (f) 13b. In each plot, we show RMSD from all independent runs.  
  



 
 

 
Figure 6:  Average free energy of protein-ligand as a function of (a) average RMSD as per Eq. 2 and 
(b) probability of RMSD, here probability is calculated for the ligands which shows less than 0.2 nm 
RMSD. 
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Figure 7: The trajectory of the ligand dissociation from the protein binding pocket. Two different views 
(a) left, and (b) right, show the full dissociation of the ligand from the binding pocket, interactions of 
the ligand with the protein backbone in the vicinity of the binding pocket for the ligand PI-06 from an 
independent simulation. The colors of the ligand wire frames are from red (inside the binding pocket) 
to gray (in between) to blue (outside of the pocket).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
Figure 8: (a) Normalized probability of the formation of hydrogen bonds (b) The hydrogen 
bond correlation functions, for the top four ligands including controls N3 and 13b. 
 
 
 
 


