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The solid-liquid coexistence of a Lennard-Jones fluid confined in slit pores of variable pore size, H, is
studied using molecular dynamics simulations. Three-stage pseudo-supercritical transformation path
of Grochola [J. Chem. Phys. 120(5), 2122 (2004)] and multiple histogram reweighting are employed
for the confined system, for various pore sizes ranging from 20 to 5 molecular diameters, to compute
the solid-liquid coexistence. The Gibbs free energy difference is evaluated using thermodynamic in-
tegration method by connecting solid-liquid phases under confinement via one or more intermediate
states without any first order phase transition among them. Thermodynamic melting temperature is
found to oscillate with wall separation, which is in agreement with the behavior seen for kinetic
melting temperature evaluated in an earlier study. However, thermodynamic melting temperature for
almost all wall separations is higher than the bulk case, which is contrary to the behavior seen for the
kinetic melting temperature. The oscillation founds to decay at around H = 12, and beyond that pore
size dependency of the shift in melting point is well represented by the Gibbs-Thompson equation.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4827397]

I. INTRODUCTION

Melting, the phenomenon of phase transition from a crys-
talline solid state to a liquid state is the most common struc-
tural transition and plays an important role in materials sci-
ence and engineering,1 nature such as in frost heaving, and
biology. In recent years, a greater attention has been given
to studying melting/freezing phenomena of confined fluids
in relevance to various fields of modern technology such as
micro-fluidics, fabrication of nanomaterials, adhesion, nan-
otribology, and nanotechnology.2

Several experimental studies have been reported on melt-
ing and freezing in well-characterized porous materials.3–5

The melting temperature of the confined solid also depends
on the relative strength of the wall-fluid interaction and the
hysteresis associated with the phase transition.6, 7 Decrease in
the freezing temperature is observed for oxygen in sol–gel
glasses of pore size distribution 2.2–18.7 nm.8 The freezing
and melting temperatures of indium are less compared to the
bulk value and vary inversely with pore diameter in porous sil-
ica glasses.4 In contrast to these results for glasses, some other
experiments have reported a significant increase in the melt-
ing temperature.5 In the case of colloidal suspension, confined
in a channel, reducing the channel size changes the system
behavior from three-dimensional (3D) to two-dimensional
(2D), and colloidal monolayer displays continuous 2D
melting.9–12

Numerous molecular simulation techniques have been
implemented to understand the freezing and melting behav-
ior of confined molecular systems.6, 13, 14 The demonstration
of the freezing transition and phase diagrams of hard sphere

a)Author to whom correspondence should be addressed. Electronic mail:
jayantks@iitk.ac.in

confined in hard slit and cylindrical pores have been reported
using molecular simulations15 and free-volume theory.16 The
elevation/depression of the freezing point is found to de-
pend on the relative strength of the wall–fluid interaction,
and the width of the hysteresis also depends on the nature
of the surfaces.17 Depression of the freezing point is also
observed in weakly attractive cylindrical pores of diameter
1.5–3.5 nm.18 The freezing temperature strongly depends
on the fluid-wall interaction strength as observed by few
workers.17–23 Evidence of transition from a 2D liquid phase
to a hexatic phase is observed for simple fluids in narrow slit
pores.24 In case of mixtures, both an elevation and a depres-
sion in the freezing temperature are observed, depending on
the mole fractions of the components.25 The freezing/melting
behaviors of confined fluids have been related to variations in
the ratio of wall–fluid and fluid–fluid interactions.21, 23

Different molecular simulation methods exist for
the determination of the melting/freezing temperature. In
case of bulk solid, heuristic methods based on Linde-
mann parameter,26, 27 Born criteria (bulk),28 non-Gaussian
parameter26 have been used successfully. In other cases, struc-
tural parameters, such as static order parameter,29 structure
factor,17, 30–33 radial distribution function, and orientational
correlation function,18, 22 are commonly used to estimate the
melting/freezing temperature. However, true melting/freezing
temperature or thermodynamic melting temperature requires
calculation of free-energy difference which can be evaluated
using thermodynamic integration18, 23, 34 for simple systems.
Other methods which have also been used to evaluate the ther-
modynamic melting temperature are phase-switch method35

and self-referential method.36–40

In case of confined solids, structural parameters are com-
monly used to evaluate melting temperature.17 Dominguez
and co-workers14 have evaluated the phase diagram of
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confined Lennard-Jones fluids for weakly and repulsive pores,
using thermodynamic integration method. In particularly,
Einstein crystal was used as a reference for the determina-
tion of Gibbs free energy of the solid phase. Radhakrishnan
et al.21 have used the Landau theory to calculate the free en-
ergy as a function of bond orientation order parameter, us-
ing umbrella sampling method, to estimate the melting tem-
perature. Wan et al.41 have used free energy method based
on Einstein crystal reference to compute fluid-solid transi-
tion under confinement. In our recent work, we have extended
the Lindemann and non-Gaussian parameters to estimate the
melting temperature for confined Lennard Jones solids, which
was well supported by structural and bond orientational order
parameters.20 However, melting temperature estimate is tricky
from non-Gaussian parameter due to the presence of multi-
ple peaks, of similar intensity, in close proximity to the melt-
ing transition. Further, heuristic methods yield kinetic melting
temperature, which is not yet compared with the thermody-
namical melting temperature of confined solids.

Earlier studies5, 8, 17, 24, 34, 42 on confined solid in slit pore
showed that elevation and depression of melting/freezing tem-
peratures are more or less linearly related to the inverse of
the slit separation. Mostly their attentions were limited to
freezing transition on quenching the system. Moreover, the
basic measurements behind most of the earlier studies were
positional/orientational correlation function. However, recent
work of Kaneko et al.42 reports an oscillatory behavior of
melting and freezing temperatures with pore size. The re-
sults based on discontinuity in potential energy and density
with temperature were in good agreement with that using
the Clausius–Clapeyron equation for the slit system.43 Wan
et al.,41 on the other hand, showed an oscillatory nature of
the free energy of the confined solid with pore size. Oscil-
latory nature of the melting temperature is also observed in
our earlier work using heuristic methods.20 These recent re-
sults raise a doubt on the earlier believed linear nature of
the melting/freezing temperature with inverse of the pore
size. Motivated from the aforementioned works, our goal in
this study is to provide more clarity in the nature of melt-
ing behavior of confined solids from a thermodynamic ap-
proach and compare the prediction via heuristic methods. In
this work, we have extended the pseudo-supercritical trans-
formation path method of Grochola’s44 along with multi-
ple histogram reweighting (MHR) method for precise deter-
mination of the melting temperature of confined Lennard-
Jones (LJ) systems. The pseudo-supercritical transformation
path method is based on the thermodynamic integration ap-
proach, which is distinct from the methods adopted by earlier
workers.14, 21, 41 The estimate of order-disorder transition tem-
perature of confined solid by Wan et al.41 was based on visual
inspection and 2D order parameter calculations. On the other
hand, Kaneko et al.42 have estimated the freezing/melting
temperature from the discontinuities in the potential en-
ergy and density; hence solid-liquid coexistence tempera-
ture under confinement was not investigated. The method of
Radhakrishnan et al.21 based on Landau theory determines
the free energy as a function of order parameter. However, it
requires efficient sampling of liquid and solid phases, which
is difficult to achieve without incorporation of advanced algo-

rithms. Dominguez and co-workers,14 on the other hand, eval-
uated the free energy for the liquid and solid phases indepen-
dently in order to find a coexistence point under confinement.
The method adopted here is similar in principle but avoids di-
rect calculation of free energy of liquid and solid phases. In-
stead, free energy difference is evaluated by means of thermo-
dynamic integration and multiple histogram reweighing meth-
ods. Hence, the current method overcomes the hurdle faced
by Dominguez and co-worker and is more efficient because
of multiple histogram reweighting technique. We first present
the details of the free energy method for evaluating the solid-
liquid coexistence under confinement. Subsequently, we eval-
uate melting temperature of a LJ solid for slit pore size rang-
ing from 8 to 5 molecular diameters, and compared with the
corresponding kinetic melting temperature. Further, we esti-
mate thermodynamic melting temperature of the LJ solid for
larger pore sizes, from 12 to 20 molecular diameters. The rest
of the paper is organized as follows. The model and method
are described in Sec. II. In Sec. III, some details of the simu-
lations are provided, and in Sec. IV, the results are presented
and discussed. Finally, concluding remarks are presented in
Sec. V.

II. MODEL AND METHODS

A. Potential models

For fluid–fluid interactions, the truncated and shifted LJ
potential is used in the following form:

Utr−sh
ff =

{
U

lj

ff (r) − U
lj

ff (rc) r ≤ rc
0 r> rc

, (1)

where

U
lj

ff (r) = 4εff

[(σff

r

)12
−

(σff

r

)6
]

,

where σ ff is the particle diameter, εff is the interaction well
depth, and r is the distance between two particles. All quanti-
ties are reduced with respect to εff and σ ff. Cut-off radius, rc,

is fixed at 5σ ff.
In this work, the pore is modeled as a slit pore with

structure-less walls. Interaction between the wall and a fluid
particle at is distance z is defined by LJ 9-3 potential.7 The
potential form is as follows:

Uwf (z) = 2

3
πρwεwf σ 3

wf

[
2

15

(
σwf

z

)9

−
(

σwf

z

)3
]

, (2)

where ρw is the number density of atoms in the wall, the
subscripts f and w represent fluid and wall, respectively.
σwf and εwf are the cross parameters for the wall-fluid
interaction. In this work, we fix σ ff = 1, εff = 1, σww

= 0.8924, εww = 0.1891, ρw = 6.3049, σwf = (σff + σww)
/2, and εwf = (εff εww)0.5, as per Refs. 7 and 20. The strength
of interaction of the wall-fluid relative to fluid-fluid interac-
tion is define by the coefficient, α = ρwεwfσ

3
wf/εff, which is

fixed at 2.32. LJ 9-3 pore size is varied from 5 to 20 molecular
diameters. In this work, all quantities are reduced with respect
to σ ff and εff.
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In addition to LJ 9-3 wall, Steele 10-4-3 potential45 is
also used for the wall-fluid interaction. The detail of the po-
tential form is given below:

φf w (z) = 2πρwεf wσ 2
f w�

[
2

5

(
σf w

z

)10

−
(

σf w

z

)4

−
(

σ 4
f w

3� (z + 0.61�)3

)]
, (3)

where � the separation between two consecutive planes of
graphite is 0.879, z is the distance of a particle from the wall.
The strength of interaction of the wall-fluid relative to fluid-
fluid interaction is defined by α = ρwεwfσ

2
wf�/εff. For this

case, H is fixed to 7.5. Two different values of relative wall-
fluid interaction are chosen: α = 1.64 and 2.14, to compare
our results with the work of Radhakrishnan and co-workers.21

For a particular pore width, H, the total potential energy
is given by

φpore =
N∑

i=1

[φf w (zi) + φf w (H − zi)], (4)

zi is the distance of a molecule perpendicular to a pore wall
and H is the distance between the two pore walls and N is the
number of particles.

B. Simulation methodologies

There are many thermodynamic routes for evaluating the
true freezing/melting temperature. More details of this aspect
have been summarized by Monson and Kofke.46 Generally
three types of methods are available to determine the melting
curve of a material in molecular dynamics, one-phase, or heat-
until-it melts (HUM) method,26 two-phase or solid-liquid co-
existence (TP) method,47 and the free energy method.30 In
this work, we adopt a different route, based on the free en-
ergy analysis, to determine the solid-liquid coexistence un-
der confinement. Free energy analysis is one of the powerful
techniques to predict the phase transition point. The estima-
tion of melting temperature from free energy analysis consists
of four steps: (a) the estimation of approximate melting point
from density-temperature hysteresis curve; (b) the computa-
tion of equation of state for the solid and liquid phases using
multiple histogram reweighting method at a reference state
point; (c) the determination of difference in free energy be-
tween solid and liquid phases at an approximate melting tem-
perature using the pseudo-supercritical transformation path;
and (d) finally using the steps (b) and (c) evaluating the tem-
perature where Gibbs free energy is zero, which is consider
as the melting temperature. Each step is described below in
detail.

1. Estimation of an approximate melting point

The method used for computing an apparent melting
point is as follows. First we progressively heat and quench
solid and liquid phases, respectively, using an isothermal-
isobaric ensemble (NPxx( = Pyy)HT) at Pxx = Pyy = 1.0. As

the liquid is quenched, the density gradually increases and at
a certain temperature the density rises sharply. In case of the
heating cycle, the density decreases and at a particular tem-
perature the density drops sharply. We locate an approximate
melting point within the hysteresis loop at which an abrupt
change in density occurs.

2. Solid and liquid equation of state

The second step is the generation of the Gibbs free
energy as a function of temperature for the solid and liq-
uid phases with respect to their respective reference state
points. This is done using the multiple histogram reweighting
(MHR) technique of Ferrenberg and Swendsen.48, 49 Sandler
and co-workers50, 51 used this technique in their reference state
melting point simulations. MHR technique has been used
successfully for the estimation of solid-liquid coexistence
point.52 Although the MHR technique has been elucidated in
Refs. 48–51, 53, and 54, for completeness we provide a brief
summary of its implementation in this study.

The Gibbs free energy G(N,P,T) can be connected to the
isothermal-isobaric partition function �(N,P,T) by the fol-
lowing relationship:

G(N,P, T )= − kBT ln �(N,P, T ), (5)

where

� (N,P, T ) = 1

V0	3NN !

∫ ∫
exp−β[U(rN )+PV ] drNdV ,

(6)

= 1

	3NN !
Z (N,P, T ) , (7)

where 	 = h /
√

2πmkBT is the thermal de Broglie wave-
length and Z(N,P,T) is the configurational contribution to the
isothermal-isobaric partition function. rN indicates the po-
sition vectors for all particles, and U(rN) is the total po-
tential energy of the system which is a sum of fluid-fluid
interaction(U1) and wall-fluid interaction(U2). V0 is the refer-
ence volume. The probability distribution function of finding
a system with a potential energy U(U = U1 + U2) and volume
V for the NPT ensemble is

℘ (U,V ; N,P, T ) = � (N,V,U ) exp (−βU − βPV )

Z (N,P, T )
,

(8)
where � (N,V,U ) is the microcanonical partition function.
By collecting a two-dimensional histogram H(U,V) of the fre-
quency in which the system is observed with a potential en-
ergy U and volume V during a NPT ensemble simulation, the
probability can be determined by

℘ (U,V ; N,P, T ) = H (U,V )

κ
, (9)

where κ = ∑
U,V H (U,V ). By equating Eqs. (8) and (9) and

rearranging, the following expression is obtained:

� (N,V,U ) = H (U,V ) Z (N,P, T )

κ exp (−βU − βPV )
. (10)
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The microcanonical partition function can be evaluated in the
region where the histogram H(U,V) is nonzero. The micro-
canonical partition function for the ith run can be transferred
as a local approximation of the global partition function. His-
tograms from m runs can therefore be combined to generate
a global thermodynamic landscape of the system. This can be
done, using a weighting function pi (N,V,U ), proposed by
Ferrenberg and Swendsen,49 which is used to combine his-
tograms from several simulations according to

� (N,V,U ) =
m∑

i=1

�i (N,V,U ) pi (N,V,U ). (11)

The form of weighting function is

pi(N,V,U ) = κ exp(−βiU − βiPiV ) /Z(N,Pi, Ti)
m∑

j=1
κ exp(−βjU − βjPjV ) /Z(N,Pj , Tj )

.

(12)
Combining the multiple histograms to create a global approx-
imation of �(N,V,U ), the probability expressed by Eqs. (8)
and (9) can be more accurately presented as

℘ (U,V ; N,Pi, Ti)

R∑
j=1

Hj (U,V ) exp (−βiU − βiPiV )

R∑
m=1

κm exp (−βmU − βmPmV ) Zi /Zm

,

(13)
where R is the total number of histograms collected and
Zi = Z(N, Pi, Ti). Equation (13) uses the fact that absolute
value of partition function is not feasible; however, it is easy
to find out the ratios of the partition functions. It is neces-
sary to construct a normalized probability distribution, since
our interest is to construct free energy curves considering a
single state point as a reference state in such a way that the
histograms overlap. The form of normalized probability dis-
tribution function is

℘ ′ (U,V ; N,Pi, Ti) =

R∑
j=1

Hj (U,V ) exp (−βiU − βiPiV )

R∑
m=1

κm exp (−βmU − βmPmV − cm)

,

(14)
where

exp (Ci) = Z (N,Pi, Ti)

Z (N,P1, T1)
=

∑
V

∑
U

℘ ′ (U,V ; N,Pi, Ti).

(15)
By defining the ‘‘weights’’ Ci in this way, all partition func-
tion values for simulations i = 2. . . R are determined with re-
spect to the value at i = 1. With the help of a good initial guess
values for the weights Eq. (14) can be solved easily and then
iterating between Eqs. (14) and (15) until convergence, accu-
rate values of the partition function relative to a fixed state
point can be determined. Using the converged values of the
weights, the normalized probability distribution can be pre-
sented by the relationship

℘ (U,V ; N,P, T ) = ℘ ′ (U,V ; N,P, T ) exp
(−Cz

i

)
. (16)

The weights will be defined as

CZ
i = ln

Z (N,Pi, Ti)

Z (N,P1, T1)
. (17)

The superscript z in the weights represent that they have been
determined using configurational partition function. Finally
combining Eqs. (5)–(7) with the definitions of the weights, it
is possible to relate the two different types of weights to total
free energy difference relative to a reference as follows:

Ci = CZ
i + 3N

2
ln

Ti

T1
= β1G1 − βiGi, (18)

where Gi = G(N, Pi, Ti). From this it can be seen that the mul-
tiple histogram reweighting method yields values of free en-
ergy for multiple state points relative to one fixed state point.
The phase coexistence point can be determined with the help
of histogram reweighting method itself as shown effectively
by Eike et al.52 For this purpose, it requires collection of his-
tograms which can sample both regions of phase space for the
two phases. However, for the case of solid-liquid coexistence,
only multiple histogram reweighting method is not sufficient
due to the free energy barrier between the two phases makes
it difficult for a single simulation to adequately sample both
solid and liquid regions of phase space, without use of smarter
methods such as phase switch Monte Carlo technique. In this
work, we perform two separate set of simulations for the liq-
uid and solid phase. Free energy curves for liquid and solid
phases are constructed from histograms, with different refer-
ence state points. Note that in the above equations P is Pxx

= Pyy and V = AH, where A is the area of the slit wall and H
is the pore size.

3. Determination of solid-liquid free energy difference
at the approximate melting temperature

The Helmholtz free energy difference between the
solid and liquid phases at an approximate melting temper-
ature is computed, according to a modified form of the
three-stage pseudo-supercritical thermodynamic transforma-
tion path which is originally proposed by Grochola.44 The
transformation method is developed, based on the construc-
tion of a reversible thermodynamic path between the solid and
liquid phases through one or more intermediate states. The
necessary and sufficient condition of the intermediate states
is that there must not be any presence of phase transition be-
tween them and the solid and liquid phases. The free energy
along this pseudo-supercritical path is computed with a stan-
dard thermodynamic integration procedure. The fundamental
equation for thermodynamic integration is

�Aex =
∫ 〈

dU

dλ

〉
NV T λ

dλ, (19)

where Aex is the difference in excess Helmholtz free energy, λ

is the integration path variable which is also known as Kirk-
wood’s coupling parameter. Typically λ vary from zero to
1 such that when λ = 0 system act as reference state and〈
dU
dλ

〉
NV T λ

indicates the NVT ensemble average for a partic-
ular value of λ. The Helmholtz free energy can be transferred
to the Gibbs free energy by the addition of pressure-volume
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FIG. 1. The schematic representation of the three-step pseudo-supercritical
transformation path for the confined system. (a) The liquid phase is converted
to a weakly interacting fluid by gradually reducing the intermolecular interac-
tions. (b) Gaussian potential wells are turned on while the volume is reduced
to produce a weakly interacting ordered phase. (c) Gaussian wells are turned
off while simultaneously intermolecular interactions are gradually restored to
achieve a crystalline phase.

energy from the change in volume throughout the three-stage
path. The pseudo-supercritical transformation pathway is as
follows. In stage a, a fully interacting liquid phase is reduced
from full intermolecular interactions to weak intermolecular
interactions. In stage b, weakly attractive fluid phase is con-
verted into solid constrained fluid phase using Gaussian wells.
In the final stage c, the Gaussian wells are turned off while
the full intermolecular interactions are brought back. Below,
the formulation of the potential energy as a function of λ

along with the derivative required for integration is described
for each stage. The schematic diagram of three-stage pseudo-
supercritical transformation path is presented in Fig. 1.

a. Stage a The goal of first step of the pseudo-
supercritical path is the conversion of the fully interacting
liquid to a weakly interacting fluid. This is accomplished
through a coupling parameter λ, which scales intermolecular
interactions in the following manner:

Ua (λ) = [1 − λ (1 − η)] Uint er (rN ) + φf w, (20)

where Uinter(rN) is the intermolecular potential energy based
on the positions of all N particles, φf w represents potential
energy due to wall-fluid interaction, independent of coupling
parameter, and η is a scaling parameter such that: 0 < η < 1.
The derivative of this function gives

∂Ua

∂λ
= − (1 − η) Uint er (rN ). (21)

b. Stage b In the second stage, simulation box volume
is decreased from the liquid volume to the solid volume. To
bring back the liquid particles to the lattice points correspond-
ing to the solid phase, Gaussian attractive potential wells are
introduced, situated at the lattice points of the crystalline
phase. Box dimensions along the non-confined dimensions
(Lx, Ly) of liquid and solid (i.e., box volume) phases must
be known at the apparent melting temperature, either from
the MHR results or from isothermal-isobaric simulation runs.

This ensures that the liquid and solid phase pressures (Pxx

= Pyy) are equal at the beginning of stage-a and at the end of
the transformation path. The potential energy based on λ for
this stage is

Ub (λ) = ηUint er [rN (λ)]+λUGauss

[
rN (λ) , rN

well (λ)
] +φf w,

(22)
where rN(λ) and rwell

N (λ) are the Cartesian coordinates of the
particles and potential wells, respectively, which is function of
λ due to the changing box volume. To relate Cartesian posi-
tion change to box volume change, the identity r = Hs is used
to convert the Cartesian vector r to the fractional coordinate
vector s using the cell basis matrix H:

H (λ) = Hl − λ (Hl − Hs) , (23)

where the subscripts l and s indicate the cell basis matrix for
the liquid and solid phases, respectively. As the system is con-
fined in the z dimension only x and y dimensions are free to
change. The Gaussian potential is given as

UGauss

[
rN (λ) , rN

well (λ)
] = −

N∑
i=1

Nwells∑
k=1

λaik exp
[−bikr

2
ik (λ)

]
,

(24)
where Nwells is the number of Gaussian potential wells sit-
uated at lattice point of N particles, aik and bik are the
parameters describing how particle i interacts with poten-
tial well k, and r2

ik (λ) = |ri (λ) − rwell,k(λ)|2represents the
distance between atom i and well k. In this work, Nwells

= N. The value of parameters a and b is taken according to
Grochola.44 The value of parameter “b” is chosen such a way
that UGauss[rN (λ) , rN

well (λ)] ≈ 1 × 10−5εff at a distance of
1.4σ ff, on the other hand amplitude constant, “a” is equiva-
lent to 8.0εff.

The derivative of Ub with respect to λ is evaluated using
the relationship for the pressure tensor,55 which is

− ∂Uint er

∂Hαγ

=
∑

β

Pex
αβV H−1

γβ . (25)

Using the above relation, and considering that the current sys-
tem is confined in the z direction, and for isotropic changes
only in the x and y directions, the derivative of the potential
function is given by

∂Ub

∂λ
=

∑
β=x,y

V (λ) H−1
ββ (λ)�Hββ

(
ηPex

ββ + λPex
Gauss,ββ

)

+ UGauss

[
rN (λ) , rN

well (λ)
]
, (26)

where �H=Hs − Hl, and Pex and P ex
Gauss are the excess pres-

sure tensors due to the intermolecular potential and Gaussian
well potential, respectively. The first term is due to pressure-
volume work associated with deforming the box and the sec-
ond term accounts for gradually turning on the Gaussian
potential wells.

c. Stage c This is the final stage of the pseudo-
supercritical transformation path. We now have a fluid con-
strained to solid configurationally phase space. The potential
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energy function of this final stage as function of λ is

Uc (λ) = [η + (1 − η) λ] Uint er (rN )

+ (1 − λ) UGauss

(
rN , rN

well

)+φf w. (27)

And the derivative is given by

∂Uc

∂λ
= (1 − η) Uint er (rN ) − UGauss

(
rN , rN

well

)
. (28)

4. Finding the temperature where �G is zero

The difference in excess Helmholtz free energy, �Aex,
between the crystalline and liquid phase at the approximate
melting temperature is produced in the previous step by ther-
modynamic integration using three-stage pseudo-supercritical
path. It is required to convert Helmholtz free energy to Gibbs
free energy. This can be easily done into the difference in
Gibbs free energy, �G through the simple relationship, �G
= �Aex + �Aid + PH�(LyLx),where �Aid is the change in
the ideal gas contribution to the Helmholtz free energy, P here
is Pxx = Pyy. Additionally, the histogram reweighting analy-
sis yields two free energy curves. The formulae used to com-
pute Gibbs free energy difference with respect to a single state
point is slightly modified from that in the original work.52 For
the liquid phase, {(βG)T1,l − (βG)Ti ,l} is known and for the
solid phase, {(βG)T1,s − (βG)Ti ,s} is known, where the ex-
pression (βG)Tm,n indicates (βG) for the meta-stable phase n
at state point Tam. Given that Tam, an approximate melting
point, is the state point at which the thermodynamic integra-
tion is conducted, the following can be obtained:

[(βG)T1,s
− (βG)Tam,s] + [β(GTam,s − GTam,l)]

−[(βG)Ti ,l
− (βG)Tam,l] = [(βG)T1,s

− (βG)Ti ,l
]. (29)

Equation (29) can be rearranged as

[(βG)T1,s
− (βG)Tam,s] + [β(GTam,s − GTam,l)]

−[− (βG)T1,l
+ (βG)T1,l

+ (βG)Ti ,l
− (βG)Tam,l]

= [(βG)T1,s
− (βG)Ti ,l

], (30)

which further can be simplified as

[(βG)T1,s − (βG)Tam,s] + [β(GTam,s − GTam,l)]

−[−{(βG)T1,l − (βG)Ti ,l} + {(βG)T1,l − (βG)Tam,l}]
= [(βG)T1,s − (βG)Ti ,l], (31)

where the first and third terms on the left side of Eq. (31)
are obtained from the MHR analysis, while the second term
comes from the pseudo-supercritical path by free energy cal-
culation. The second term is yielded by combining relatively
large free energy changes obtained over the transformation
path.

III. SIMULATION DETAILS

In this work, two types of attractive pore walls are con-
sidered for the wall-fluid interaction viz., LJ 9-3 potential and
Steele 10-4-3 potential. Gibbs free energy difference between
solid and liquid phases is determined at a single state point as

per the methodology described above. Thermodynamic melt-
ing temperature is evaluated where Gibb’s free energy differ-
ence of two phases become zero.

First, we choose an approximate melting temperature,
Tam, using hysteresis loop. This is done by performing
two different types of NPxx(= Pyy)HT simulation using
LAMMPS56 One for the quenching cycle and another for the
heating cycle. The velocity-verlet algorithm is used to inte-
grate the equation of motion with a time step, �t = 0.004.
The temperature and pressure are controlled using a Nosé–
Hoover thermostat and barostat57 with relaxation times of 2.0
and 5.0 for temperature and pressure, respectively. In the cur-
rent work, the model fluid is confined between two structure-
less parallel slit surfaces separated by a distance H. H is var-
ied from 5 to 20 molecular diameters. Approximately 4000–
20 000 particles are used to run the simulations. Truncated and
shifted potential is used with a cutoff radius of 5σ for both
the particle-particle and wall-fluid interaction throughout this
work. The periodic boundary condition is applied in only two
directions, i.e., x and y. Pressure along the periodic dimen-
sions are kept fixed: Pxx = Pyy = 1. In case of quenching, the
initial liquid configurations are taken randomly at a tempera-
ture T = 1.2. Cooling is performed in a step-by-step procedure
after each 2.5 × 106 MD time-steps; T is gradually reduced
in steps of 0.03 from 1.2 to 0.3. During the heating process,
we have taken the last configuration of the quenching pro-
cess as the initial configuration. Heating is also performed us-
ing a step-by-step procedure. After 2.5 × 106 MD time-steps,
T is progressively increased by 0.03, and heating is contin-
ued until the solid has completely lost its crystallinity. During
both quenching and heating cycles, the density is recorded as
a function of temperature.

To construct the Gibbs free energy curves of the crys-
talline and liquid phases under confinement, using MHR, his-
tograms are collected from NPxx(= Pyy)HT molecular dynam-
ics simulations using the Nose´-Hoover thermostat-barostat
algorithm57 with anisotropic cell fluctuations. We perform 11
simulations for each phase. The temperature is chosen accord-
ing to the following relationship:

Ti = Tam +
5∑

n=−5

n�T ,

where Tam is the approximate melting temperature estimated
from the hysteresis data; �T = 0.0205 is chosen according to
Eike et al.52

The initial configurations for solid-phase or liquid phase
simulations are taken from the NPT simulation run used
for hysteresis analysis. Following sufficient equilibration, for
around 200 ps, simulations are conducted for 10 ns using a
time step of 4 fs. The solid phase simulations are conducted
by progressively increasing the temperature by �T = 0.0205,
while liquid phase temperature is gradually decreasing by the
same order. The reference state points are chosen along the
quenching and heating paths, for liquid and solid phases re-
spectively, at the lowest temperature, Ti = Tam − 5�T. The
system’s potential energy U and volume V are recorded at ev-
ery time step, and these data are converted into histograms.
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The step c calculates the Gibbs free energy difference
at Tam using three-stage thermodynamic integration method.
Simulations at each stage are conducted under NVT ensem-
ble. For each integration stage, ten simulations were con-
ducted, with the values of λ chosen according to the standard
ten point Gauss-Legendre integration scheme. For the Gaus-
sian potential well parameters, values are calculated as per
Grochola.44 The value of the scaling parameter is kept fixed
at η = 0.1.52

Simulations for the first stage of the transformation path
are started from a random initial configuration (i.e., λ = 0)
which is obtained during hysteresis runs. Subsequently for
each λ initial configuration is taken from its previous λ sim-
ulation. For all the three stages time step is fixed at 0.004,
and total simulation run for each λ is 5 × 106. For the second
stage, stage b, we take the last configuration of the stage-a as
the initial configuration. However, to obtain the final config-
uration we put dummy atoms on the crystal lattice obtained
from the heating run. In order to assess the error for this
stage we have considered 3–4 initial crystal configurations
(obtained from the hysteresis runs). The Gaussian potential
wells are attached to these dummy atoms. Box dimensions
(LX, LY) are modified according to λ values as derived in
Sec. II B. The initial configuration for the third stage is taken
from the heating run of hysteresis loop at Tam and the dummy
atoms are created as described for the second stage. Thermo-
dynamic integration is solved with the help the standard ten
point Gauss-Legendre integration scheme for all the stages.

We separately performed simulations as per Eike et al.52

to determine the thermodynamic melting temperature of the
bulk LJ fluid using the three-stage pseudo-critical transfor-
mation path along with MHR.

IV. RESULTS AND DISCUSSION

A. LJ 9-3 surface

We start our discussion with the strongly attractive LJ
9-3 wall case, with relative wall-fluid strength α = 2.32. Pore
width is varied from 20 to 5 molecular diameters. Figure 2

FIG. 2. Local density (ρL) as a function of pore distance for H = 8.0, for the
quenching case.

presents the density along the pore width for the quenching
path (similar is the case for the heating path). At higher tem-
peratures (see for example T = 1.2), density peak of the layers
are not pronounced. As the temperature decreases the peak
height increases, and sharp distinct peaks are observed for the
solid phase. From the change in the peak height and shape,
solid and liquid phases can be distinguished and an approxi-
mate melting temperature can be estimated. However, deter-
mination of the true thermodynamics melting transition point
requires calculation of the free-energy for both the solid and
liquid phases.

As stated earlier, the first step of evaluating the true ther-
modynamic melting temperature is to determine an approxi-
mate melting temperature which is done using hysteresis loop
along the phase transition. We first calculate the overall den-
sity of the confined system along the quenching and heat-
ing paths. Fig. 3 shows a plot of the density as a function
of the temperature for both cases, for H = 8. As the liquid
is quenched, the density gradually increases and at a certain
temperature the density rises drastically. In case of heating,
the density decreases and at a particular temperature the den-
sity drops sharply. The hysteresis loop, as shown in Fig. 3, in-
dicates a first-order phase-transition. A wide meta-stable re-
gion is observed around the true phase-transition point. The
melting point is adjacent to this meta-stable region. It clearly
shows that abrupt density change or a discontinuous drop in
density occurs at T = 0.87, which indicates that the true ther-
modynamic melting temperature would be lower than this
temperature. In Fig. 3 vertical dash line represents the ap-
proximate melting temperature Tam = 0.72, at which free en-
ergy difference is evaluated using pseudo-supercritical trans-
formation path. Solid and liquid box lengths are determined
from the corresponding densities as shown by horizontal
dotted lines.

Gibbs free energy curves are constructed taking T = 0.72
as an intermediate point. Simulations are performed at 11

FIG. 3. Density as a function of temperature for solid and liquid phases at
Pxx = Pyy = 1.0 for pore width, H = 8, for εwf = 0.4348 and α = 2.32.
Symbols square and circle represent quenching and heating cycles, respec-
tively. The solid (top curve) progressively heated from T = 0.3 to 1.2, while
the liquid (bottom curve) is quenched progressively from T = 1.2 to 0.3. Ver-
tical dotted line indicates an approximate melting temperature (Tam). Hori-
zontal dotted lines indicate corresponding densities of the solid and liquid
phases at Tam.
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FIG. 4. Relative Gibbs free energy curves as a function of temperature for
confined Lennard-Jones system for H = 8 relative to their respective refer-
ence states, constructed from MHR.

different temperatures, as described earlier, taking approxi-
mate melting temperature as an intermediate middle/central
point of 11 simulations. For each temperature, two sets of
simulations are performed one for the heating case and an-
other for the quenching case, resulting in 22 histograms.

The relative Gibbs free energy curves for both the phases
are generated by collecting the histograms separately for solid
and liquid phases. For each branch, Eqs. (14) and (15) are
solved iteratively by assuming initial guess values to deter-
mine the weights Ci

Z. Subsequently these weights are used in
Eq. (18) to construct the full Gibbs free energy curves with
respect to the lowest temperature state point for each phase.
Fig. 4 presents the Gibbs free energy curves for the solid and
liquid phases with respect to their respective reference state.
The next step is evaluation of Gibbs free energy difference
between two phases at an approximate melting temperature.
Change in Gibbs free energy can be expressed as

�G = �Ga + �Gb+�Gc = �Aex+�Aid+PH�(LxLy).

(32)

The term �Aex is produced from the three-stage pseudo-
supercritical transformation path method, �Aid is the change
in the ideal gas contribution to the Helmholtz free energy,
and the last term is the pressure volume (pressure here cor-
responds to the lateral components of the pressure tensor, i.e.,
P = Pxx = Pyy) work due to the change in volume from liquid
to solid.

Thermodynamic integration is conducted at an approxi-
mate melting temperature along the pseudo-supercritical path,
through which solid and liquid phases are connected avoid-
ing the first order phase transition. The box lengths for solid
and liquid phases are determined from their respective den-
sities as shown in Fig. 3. The box lengths are chosen such a
way that Pxx = Pyy = 1 remain constant at the beginning of
the stage-a and at the end of the stage-c which is shown in
Fig. 5. We also observed overall pressure to remain constant.
Plots of 〈∂U / ∂λ〉NV T λ as function of λ for three stages of
thermodynamic integration are shown in Fig. 6, which shows
that curves are continuous and integrable for all the three

FIG. 5. Pxx as a function of λ for three steps for H = 8. Pressures at the
beginning of stage-a and pressure at the end of stage-c are same, which is
the essential characteristic for the three-stage pseudo-supercritical transfor-
mation path. Pyy’s behavior is also similar in nature.

steps. Further, we have also checked the reversibility of the
thermodynamic path considered in this work. For all the three
cases, error bars are of the order of symbol size. The different
contributions to the Gibbs free energy for all the wall separa-
tions are shown in Table I.

FIG. 6. 〈∂U / ∂λ〉NV T λ as a function of λ for three-stage pseudo-
supercritical transformation path for the confined Lennard-Jones system for
H = 8.
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TABLE I. Estimated true thermodynamic melting temperature, Tm, and various contributions to the Gibbs free energy, for different pore sizes, H, with variable
wall-fluid interaction strength at approximate melting temperature (Tam). �G denotes Gibbs free energy difference at Tam. ρL and ρS represent corresponding
densities of liquid and solid respectively at Tam.

H Tam ρL ρS �Aex �Aid P�V �G Tm

Wall(LJ 9-3) εwf = 0.4348, α = 2.32
20.0 0.75 0.869 0.966 −50.327 ± 0.231 1462.454 −2130.132 − 717.915 0.767 ± 0.001
16.0 0.72 0.912 0.943 −79.981 ± 0.765 461.452 −545.097 − 163.625 0.773 ± 0.001
12.0 0.78 0.864 0.961 354.179 ± 0.973 863.154 −1215.040 2.294 0.782 ± 0.001
8.0 0.72 0.885 1.005 −77.663 ± 1.574 537.906 −792.706 − 332.463 0.813 ± 0.002
7.5 0.75 0.868 0.949 −31.595 ± 0.635 382.820 −562.557 − 211.333 0.782 ± 0.002
7.0 0.72 0.893 1.007 −42.561 ± 0.848 484.360 −709.683 − 267.884 0.775 ± 0.002
6.5 0.75 0.872 0.950 −32.985 ± 0.689 359.334 −526.495 − 200.146 0.823 ± 0.002
6.0 0.72 0.874 0.972 −44.936 ± 0.942 368.823 −556.085 − 232.198 0.763 ± 0.002
5.5 0.78 0.836 0.915 −22.994 ± 0.526 339.593 −497.963 − 181.364 0.814 ± 0.004
5.0 0.75 0.812 0.899 −17.693 ± 0.434 307.741 −480.745 − 190.697 0.783 ± 0.003

Wall(Steele 10-4-3) εwf = 0.3325, α = 1.65
7.5 0.75 0.871 0.972 −50.414 ± 0.994 480.800 −697.377 − 266.99 0.823 ± 0.006

Wall(Steele 10-4-3) εwf = 0.4348, α = 2.14
7.5 0.78 0.855 0.973 −194.199 ± 4.040 581.367 −817.417 − 430.249 0.854 ± 0.005

Once the Gibbs free energy difference of two phases is
determined at an approximate melting temperature, it is no
longer difficult to convert liquid Gibbs free energy curve rel-
ative to a solid reference state using Eq. (31). The two Gibbs
free energy curves with respect to a single reference state
point are shown in the Fig. 7. Using the relative free energy
between the crystalline and liquid phases at a single point, the
free energy difference between crystalline and liquid phases
can be evaluated for all other points. By determining �G in
this way over a range of temperatures, a �G vs. temperature
curve can be produced, and the temperature where this curve
is zero produces a single coexistence point or thermodynamic
melting temperature The Gibbs free energy difference, �G,
between solid-liquid phases as a function of temperature is
shown in Fig. 8, which clearly shows the temperature at which
equality in free energy of both the solid and liquid phases oc-
cur. The coexistence temperature calculated using the above
mentioned method for H = 8 is 0.813 which is well agreement
with our earlier results based on heuristic method.20 However,

FIG. 7. Relative Gibbs free energy as a function temperature for H = 8 con-
structed from MHR. Both branches are relative to the solid reference state.

this is not the case for all other different slit separations. Dif-
ferent contribution to the Gibbs free energy and estimated true
thermodynamic melting temperatures for different slit separa-
tions are given in Table I. We have also evaluated the melting
temperature of bulk LJ system using the three-stage pseudo-
critical transformation path along with MHR. Our calculated
value 0.763 is consistent with that of Eike et al.52 We observed
an elevation of melting temperature under confinement as
studied in this work. This agrees with the results of Radhakr-
ishnan and co-workers21 based on Landau theory and orienta-
tional order parameter formulation, which predicts that melt-
ing temperature should elevate for α > 1.15. However, there
is no certain relation between the melting temperature and the
slit separation, and is oscillatory in nature as also found by
earlier worker via different methods.21, 41, 42 Wan et al.41 eval-
uated the order-disorder transition temperature, based on vi-
sual inspection and 2D order parameter. Though they did not

FIG. 8. �G as a function of T for H = 8. Vertical arrow dashed line indicates
solid-liquid coexistence temperature or true thermodynamic melting temper-
ature (Tm), where Gibbs free energy difference, �G, between the solid and
the liquid phases is zero.
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FIG. 9. Comparison of thermodynamic melting temperature with kinetic
melting temperature for different pore sizes. Horizontal dotted line (bottom
line), black in color, represents the bulk kinetic melting temperature. Hori-
zontal dotted line in red color (top line) represents the bulk thermodynamic
melting temperature.

report the direct coexistence solid-liquid temperature under
confinement, free energy of nano-confined solids using Ein-
stein method revealed similar oscillatory behavior. Kaneko
and co-workers42 determined the melting/freezing tempera-
ture from the discontinuities of potential energy and density.
It should be noted that slit pore sizes in the studies of Wan
et al.41 and Kaneko and co-workers42 were in the range of
2–7 molecular diameters. As we later show that beyond
H = 12, we observed suppression in the oscillatory behavior.

Fig. 9 shows the thermodynamic melting temperature,
with respect to the bulk value, for pore sizes H = 5–8.
Fig. 9 also presents a comparison of the kinetic melting
temperature,20 based on Lindemann parameter and Non-
Gaussian parameter, with the thermodynamic melting tem-
perature. In our earlier work,20 we have reported that the ki-
netic melting temperature displays both elevation and depres-
sion behavior with wall separation. Interestingly, in this work
we observe only an elevation in the thermodynamical melt-
ing temperature compare to that of bulk solid. However, os-
cillatory behavior in the melting temperature (kinetic or ther-
modynamic) is a generic behavior with pore size as studied
in this work. The oscillation in melting temperature indicates
incommensurability of the crystal structures with the space
available in the pores. However, at larger pore sizes melting
temperature is closer to the bulk value, which indicate that
confinement effect gradually diminish as pore size increases.
The shift in melting temperature for H ≥ 12 is in linear re-
lationship with inverse of the pore size and obeys the Gibbs-
Thomson equation, as shown in Fig. 10. Based on the data of
H = 12, 16, and 20, we expect the confinement effect to be
insignificantly for the pore size >25. This observation is in
line with that observed for the vapor-liquid coexistence under
confinement.58

It should be noted that the structure observed just be-
fore melting for both the heuristic and thermodynamics based
methods are indifferent, which may be the reason for simi-
larly in the overall behavior of melting temperature against
pore size using kinetic and thermodynamic approaches. The

FIG. 10. The shift in melting temperature reduced by the bulk melting tem-
perature, Tm [(Tmc − Tmb)/Tmb], as a function of inverse of the pore size, H.
Tmb is the bulk melting temperature and Tmc is the melting temperature under
confinement. The dashed line is a fit to the data of H = 12, 16, and 20, based
on the Gibbs Thomson equation. The firm lines connect square symbols cor-
responding to H = 5–8 molecular diameter, with an increment of 0.5.

qualitative agreement between thermodynamic and kinetic
approaches supports the usage of heuristic methods such as
non-Gaussian and Lindemann parameter (for qualitative pre-
diction), which is straight forward and computationally ex-
tremely less intensive.

B. Steele 10-4-3 surface

We now turn our attention to a different wall-fluid inter-
action, i.e., 10-4-3 Steele potential. In this case we perform
simulation for H = 7.5 with two sets of relative wall-fluid
interaction α = 1.64 and 2.14. The approximate melting tem-
perature is determined by computing density as a function of
temperature, as per the details mentioned in Sec. IV A. Based
on the sudden change in density at T = 0.87 for α = 2.14,
we consider T = 0.78 as an approximate melting tempera-
ture. The construction of Gibbs free energy curves is done in
a temperature range from 0.6775 to 0.8825 with a temperature
increment of �T = 0.0205. Total 22 histograms, 11 for each
phase, are collected. After reweighting all the histograms, two
Gibbs free energy curves are constructed with respect to their
respective reference states.

The Gibbs free energy difference is evaluated at the
approximate melting temperature from three stage pseudo-
supercritical transformation path. The box lengths of solid and
liquid phases are selected based on their respective densities
such that the Pxx = Pyy = 1 at the beginning of the transforma-
tion path and end of the transformation remain constant. Plots
of pressure versus λ are similar to that seen in Fig. 5 for three
stages. Plots of 〈∂U / ∂λ〉NV T λas a function of λ are smooth
and integrable as presented in Fig. 6. The different contribu-
tions to the Gibbs free energy difference at the approximate
melting temperature are shown in Table I.

Using the Gibbs free energy difference from thermody-
namic integration and with the help of Eq. (31) the liquid
free energy curve is transferred to the same reference as the
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FIG. 11. �G as a function of T for H = 7.5. Horizontal dashed line repre-
sents �G = 0, and vertical arrow dashed line indicates solid-liquid coexis-
tence temperature or true thermodynamic melting temperature(Tm) of solid
where Gibbs free energy difference between solid and liquid is zero.

solid free energy curve. The Gibbs free energy curves are con-
structed after shifting to the same reference state. A plot of
�G as function of temperature is presented in Fig. 11. The
computed coexistence temperature or melting temperature is
T = 0.855. This value is slightly higher than the value of
T = 0.83 as reported by Radhakrishnan et al.21 The melt-
ing temperature for relative wall-fluid interaction α = 1.64 is
T = 0.823 where Radhakrishnan and co-workers21 reported
0.810. Though the values are in close proximity with the liter-
ature value, it should be noted that the thermodynamics melt-
ing temperature evaluated in this work corresponds to the tem-
perature at which solid and liquid phases are in equilibrium
under confinement. This is in contrast to the system studied
by Radhakrishnan and co-workers, where they considered the
temperature corresponding to the confined solid-bulk liquid
coexistence. Hence, the results are expected to be slightly dif-
ferent. This work though presents the results of simple LJ sys-
tem yet it can be extended/implemented to confined complex
molecular systems, which we plan to undertake in our future
work.

C. Crystal structures in confined slit pore

We also rigorously studied the structure of confined
crystal for all wall separations, for earlier mentioned wall-
fluid interaction. We estimate in-plane order parameter:

ψk =
〈

1
Nb

∣∣∣∑Nb

j=1 exp
(
ikθj

)∣∣∣〉, where k = 4 and 6 represents

square and triangular symmetry, respectively; Nb is the total
number of near neighbors at a distance of 1.5 in each layer and
θ j is the angle formed by a particle with its nearest-neighbor
atom. �k = 1 indicates that there is complete k-time symme-
try in the crystal structure or in the layer and �k = 0 means
there is no k-time symmetry in the layer. A high value of �4

indicates square dominated structure in the plane and that for
�6 indicates triangular symmetry. We observe �6 values are
always higher than �4 for all the wall separations, except for
H = 5.

Table II summarizes the crystal structure and orientation
order parameter for various wall separations. All structures

TABLE II. Representation of the change in crystal structure and orientation
order parameter with wall separation.

H Structures �4 �6

5.0 5S 0.503 0.044
5.5 5T 0.133 0.610
6.0 6T 0.117 0.768
6.5 6T 0.145 0.710
7.0 7T 0.159 0.549
7.5 7T 0.104 0.779
8.0 8T 0.034 0.745

are taken at T = 0.7. Though we present only the results for
the contact layer, the nature of all the layers is similar. Here,
nS represents n-layered solid of square-like symmetry in each
layer, which basically are FCC(100) planes; and nT repre-
sents n-layered solid of triangular or hexagonal-like symme-
try in each layer, which mainly are FCC(110) or FCC(111)
plane of orientation. Fig. 12 presents the side views and top

FIG. 12. Representative snapshots (side and top views) for LJ particles con-
fined in parallel slit pores.
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views of the crystal structures, for different wall separation.
For example, at H = 5 it is FCC 100 plane however it is not
perfect and some distortion from the square lattice is clearly
visible in the top view. On the other hand, at H = 6.5, a highly
ordered FCC 111 plane is observed, as also supported by
the order parameter value (see Table II). However in case of
H = 6 both the square and triangular symmetries are
observed. At higher H, hexatic phase is dominant. The
observed structures are in agreement with that seen in earlier
reports.42, 59

V. CONCLUSION

In this work, we present the melting behavior of LJ
solids confined in strongly attractive slit pores of different
pore sizes. Thermodynamic melting temperatures of confined
LJ fluids are evaluated using a pseudo-supercritical trans-
formation path connecting the solid and liquid phases with-
out first order phase transition along with multiple histogram
reweighting. The thermodynamic melting temperature for al-
most all wall separations is higher than the bulk case, which
is contrary to the behavior seen for the kinetic melting tem-
perature. Oscillatory nature of melting temperature for pore
size, H ≤ 8, is confirmed with an accurate estimate of true
melting temperature. On the other hand, for H ≥ 12 the ther-
modynamic melting temperature is in linear relationship with
inverse of the pore size, as predicted by the Gibbs-Thomson
equation. The method employed is advantageous over other
existing methods, since separate evaluation of free energy
of each phase is not required. Hence, no need to find out
appropriate reference states with known free energy values.
The method is extremely useful to locate a single coexistence
point, which could be used as an initial guess for generating
full phase diagram.

The method used in this work utilizes the overall behav-
ior of confined crystals; hence, cannot identify melting tem-
perature of confined layers. Further, it requires large num-
ber of simulations in series, which is computationally costly.
However, it can be made efficient by the use of replica ex-
change molecular dynamics. We observed kinetic melting
temperature based on heuristic methods behaves similar to
that of thermodynamic temperature with the pore size. Con-
sidering similarities, non-Gaussian and Lindemann methods
are promising as these methods can be used to provide qual-
itative nature of melting temperature of confined solids rela-
tively quickly.
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