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ABSTRACT: The ultrathin films of 2-ferrocenyl-1,3-dithio-
lane (FcS2C3) and 2-ferrocenyl-1,3-dithiane (FcS2C4) drop-
casted from toluene on highly oriented pyrolytic graphite
(HOPG) surface are investigated using atomic force
microscopy (AFM). Two types of growth polymorphs have
been observed, which are distinctly different based on their
nature of growth and the molecular level packing. We have
developed a new type of temperature-dependent desorption
experiment named “microscopic thermal desorption analysis”
(MTDA) for understanding the adsorption energetics related
to the observed growth polymorphs on the surface. Using
MTDA, we have calculated the adsorption energies of growth
polymorphs of both molecules and further revealed that their
formation requires an activation energy. The subtle relation between the adsorption energies and activation energies of growth
polymorphs account for their average abundance on the surface. The experimental observations are further supported by density
functional theory (DFT) calculations.

■ INTRODUCTION

Ferrocene (Fc), a sandwich transition metal complex of iron
and cyclopentadienyl (Cp), is well-known for its controllable
electronic and magnetic properties.1−3 Because of the
tunability of their electronic properties, thin films based on
Fc and its derivatives have recently attracted interest in
electronic devices like diodes, rectifiers, and transistors.4−12

The control on the microscopic structure, in turn, is crucial in
tuning their electronic properties. Fc derivatives with various
functional groups have been used as a tool for controlling the
microscopic structure of thin films under ultrahigh vac-
uum1,13−26 and at ambient conditions.27−32

Recently, we have shown that solvents can be used as a
control for tuning the microscopic pattern of thin films of Fc
derivatives at ambient conditions.33 In this article, we have
studied the ultrathin films of 2-ferrocenyl-1,3-dithiolane
(FcS2C3) and 2-ferrocenyl-1,3-dithiane (FcS2C4) drop-casted
from toluene on highly oriented pyrolytic graphite (HOPG).
An unusual long anisotropic growth (1D chain) is observed for
both molecules when drop-casted from toluene, which is never
observed when molecules are deposited from solvents like
methanol, ethanol, dichloromethane, dimethylformamide, and
acetone at ambient conditions. In addition to 1D chains, we
observed another ordered assembly of molecules (1D island)
which is ≈10 times more abundant than the 1D chain at
ambient conditions. To understand the abundance and its
relation to the adsorption energy of the growth polymorphs on

the surface, we have performed a new type of desorption
experiment, namely “microscopic thermal desorption analysis”
(MTDA). In MTDA, we measure the average abundance of
different growth polymorphs at different annealing temper-
ature using AFM micrographs. Using the average abundance
and an equilibrium desorption−adsorption model, we
determined the adsorption energies of different polymorphs.
Conventionally temperature-programmed desorption (TPD)
has been performed on physisorbed molecules on different
surfaces34−39 to understand their adsorption energies and
phase transitions. TPD is a bulk measurement, and the
averaging effect causes difficulties in differentiating the
assemblies with a subtle difference in adsorption energy.
Microscopy is therefore a possible alternative. We show that
using MTDA, we can measure small differences in the
adsorption energies of growth polymorphs of FcS2C3 and
FcS2C4. The micrographs involved in every step reveal the
overall microscopic nature of the surface, which is an added
advantage of MTDA over TPD. We also note that using
scannig tunneling microscopy (STM), at the solid−liquid
interface, temperature-controlled desorption kinetics has been
demonstrated previously.40
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■ EXPERIMENTAL DETAILS
Surface characterization is performed using an Agilent 5500
atomic force microscope (AFM) in intermittent contact mode.
Aluminum-coated silicon cantilevers from Nanosensors (PPP-
NCHR) are used as AFM probes. The resonance frequency
and the spring constant of the cantilever are ≈300 kHz and
30−34 N/m, respectively. Image processing is performed using
WSxM application from Nanotec. The drop-casting method is
employed to produce the ultrathin films of molecules from
solution phase (concentration ≈ 10−5−10−6 M) on freshly
cleaved HOPG (ZYB grade from μmasch). 3−4 μL of the
solutions of FcS2C3 and FcS2C4 (in AR grade (>99.9%)
toluene/methanol) are drop-casted on HOPG, keeping the
surface at ≈20°−30° to ensure a smooth flow and uniform
spreading of the solution over the substrate. It is then dried in
ambient conditions for ≈5 min followed by mild pumping
(0.01 mbar) for complete removal of the solvents, and surface
imaging is performed afterward. Annealing of the solid state
film is executed on hot plate at ambient conditions. While
annealing, the temperature of the HOPG surface is measured
with a K-type thermocouple with a typical error of ≈0.4−0.7
°C. For the annealing experiments; the surface is kept at ≈45
min at elevated temperatures. We note that it takes
approximately 3−4 min for the surface to reach the annealing
temperature as obtained from control experiments. We have
also performed additional experiments at longer time of
heating and have not observed any distinguishable difference
compared to annealing at 45 min. During AFM studies, the
relative humidity (≈50%) and temperature (23−26 °C) of the
room are maintained by an air conditioner and a dehumidifier.
2-ferrocenyl-1,3-dithiolane (FcS2C3) and 2-ferrocenyl-1,3-
dithiane (FcS2C4) are synthesized according to the liter-
ature.33,41 The chemical structures of the molecules are
included in the Supporting Information.

■ RESULTS AND DISCUSSION
Figure 1a shows a ball and stick model of 2-ferrocenyl-1,3-
dithiolane (FcS2C3) as obtained from the bulk X-ray crystal
structure data. Figure 1b shows a typical AFM topograph of an
ultrathin film of the molecule as deposited from toluene on
HOPG (0001) surface at ambient conditions. The submono-
layer coverage of FcS2C3 reveals molecular domains, which are
typically appearing as bright contrasts on the surface (with

respect to pristine HOPG (blue)). Two types of molecular
domains are observed within the submonolayer coverage,
which are distinguishable by their nature of growth. The first
type is observed as long islands with well-defined edges, and
their growth is limited to a few hundreds of nanometers
(indicated using yellow and black lines). It is also observed that
this type of island is confined within the given terraces. We
term this type of growth as 1D islands. This growth was
previously observed for FcS2C3 from different solvents.33 In
contrast, the other types of molecular domains are very long
and grow up to a few micrometers (maximum length observed:
≈4 μm). Part of two such domains are marked with red lines,
and we address this type of growth as 1D chains. Interestingly,
the 1D chains grow over monatomic terraces uninterrupted
(indicated by red arrowhead), and the growth is restricted only
by other molecular domains. The average width and apparent
height of the 1D chains are ≈25 nm and ≈2.5 nm, respectively,
which make it distinctly distinguishable from 1D islands.
Height profiles of 1D chains and 1D islands are shown in the
Supporting Information. Figure 1c shows topographs of an
area with ≈100% abundance of 1D chains (area with ≈100%
abundance of 1D islands is included in the Supporting
Information). To ensure that these long features are not
originating from pure graphite or solvents, we have analyzed
freshly cleaved HOPG with and without solvents at different
temperatures. Images of HOPG surface after depositing pure
solvents and at higher temperature are given in the Supporting
Information.
High-resolution AFM phase image of a few 1D chains and

amplitude image of a 1D island are provided in Figures 1d and
1e, respectively. Periodic line-like contrasts are revealed along
the length of the island and chains. The average spacing
between adjacent line-like features is 0.6 ± 0.1 and 0.8 ± 0.1
nm in 1D islands and 1D chains, respectively. It is to be noted
that the spacing is much larger compared to the size of the
molecule. Therefore, we suggest that the contrast is originating
due to the moire ́ effect of molecular rows within the islands/
chains. The moire ́ effect arises due to incommensurate
adsorption of adjacent molecular rows with respect to the
surface sites.28,33 Interestingly, the line-like contrast runs along
the entire length of islands/chains uninterrupted, which
indicates that the 1D islands and 1D chains are monocrystal-
line in nature.

Figure 1. (a) Ball and stick model of FcS2C3 obtained from X-ray crystallographic data. (b) AFM topograph of an ultrathin film of FcS2C3 on
HOPG (0001) surface deposited from toluene. Two types of molecular domains are observed and are named 1D island (yellow and black lines)
and 1D chain (red lines). Rotational domains of 1D islands are marked with yellow and black arrows, whereas for the 1D chain, it is marked with
red arrows. The growth of the 1D chain which crosses through the terrace edge is marked with a red arrowhead. Few terrace edges are indicated
with black dashed lines. (c) Large area topographs of an area showing exclusively 1D chains. High-resolution phase image of a few 1D chains (d)
and amplitude image of a 1D island (e).
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It is also observed that both 1D islands and 1D chains have
preferred growth directions (referring to long edges). A
statistical analysis (data provided in the Supporting Informa-
tion) is performed for the angle between the long edges of 1D
islands and is observed that there are six major orientations
centered around ≈0/60/120° (marked by yellow and black
arrows). On the other hand, the 1D chains show only three
distinct growth directions (with respect to their long edge) at
≈0/60/120° (marked by red arrows). The orientations suggest
that 1D islands are rotated by ±4° with respect to graphite
compact directions and 1D chains are aligned to graphite
compact directions. On the basis of the nature of the growth
and the orientation of molecular rows with respect to graphite
compact directions, it can be summarized that the microscopic
pattern for 1D chains and 1D islands are different (will be
discussed later).
The average abundance of the 1D islands and 1D chains is

0.140 ± 0.006 and 0.0120 ± 0.0005, respectively, obtained
from statistical analysis (see details in the Supporting
Information). On the basis of the average abundance, using
Boltzmann statistics, it can be suggested that the formation of
1D islands are energetically preferred over 1D chains. In other
words, the adsorption energy of 1D islands is larger compared
to 1D chains. If this is true, then the ratio of average
abundance of 1D chain to 1D island (θC/θI) should decrease
as the temperature increases. To prove the above statement
and to understand the adsorption energies of these growth
polymorphs, we have performed a temperature-dependent
abundance study of 1D chains and 1D islands on the surface.
We term the method as “microscopic thermal desorption
analysis” (MTDA).
In MTDA, we analyze the change in abundance of each

polymorph as a function of temperature using the correspond-
ing micrographs. Because we use micrographs to analyze the
abundance, we have a microscopic understanding of the film
and the polymorphs at different temperatures. Thus, the
different types of polymorphs desorbing from the surface is
accounted independently, and their adsorption energies are not

averaged out. We perform the experiment as follows: the
ultrathin film prepared from toluene at ambient conditions is
subjected to annealing to a higher temperature at an interval of
≈20 K up to complete desorption of the film from the surface
(≈410 K in this case). Figures 2a, 2b, and 2c show typical
AFM phase images of ultrathin film of FcS2C3 after annealing
to ∼322.3, ∼342.8, and ∼362.7 K, respectively (images are
obtained at RT). It is to be noted that the 1D islands coalesce
(marked with yellow line), and therefore the average size of the
islands appears larger compared to that at room temperature.
We note that the orientations (with respect to long edge) of
the islands are the same as that observed for 1D islands at
room temperature (marked with yellow and black arrows).
Unlike 1D islands, the 1D chains are observed as individual
chains (a few chains are indicated with red lines) after heating.
Therefore, we propose that the 1D chains do not coalesce with
themselves or with 1D islands. Additional AFM phase images
at various annealing temperatures are shown in the Supporting
Information.
The average abundance obtained for 1D islands (θI) and 1D

chains (θC) as a function of temperature is shown in Figure 2d.
The first points (indicated using double-headed arrow)
correspond to the abundance of 1D islands and 1D chains
from the “as-deposited ultrathin film” from toluene. It is found
that with increasing temperature, the abundance of both
polymorphs decreases as expected. However, the ratio of the
abundance of 1D chains to 1D islands (θC/θI) shows an
unexpected increase as a function of the temperature (cf.
Figure 2e). This suggests that the rate of desorption for 1D
islands is higher than that of 1D chains.
We use the following model to understand the formation of

different growth polymorphs. A suggestive free energy profile
(q is intermolecular distance) for the adsorption/desorption
process without activation barrier (blue dashed line) and with
activation barrier (solid red/black lines) is shown in Figure 3a.
If the adsorption/desorption is activation barrierless (blue
dashed line, Figure 3a), then the adsorption energy (Eads) is
equal to the desorption energy (Ed). In this case, the

Figure 2. (a, b, c) AFM phase images of ultrathin films of FcS2C3 obtained after annealing the ambient prepared ultrathin film at ∼322.3, ∼342.8,
and ∼362.7 K, respectively. 1D islands are marked with yellow lines whereas 1D chains are marked with red lines. (d) Average abundance of 1D
islands (black) and 1D chains (red) as a function of temperature. (e) Ratio of abundance of 1D chains and 1D islands (θC/θI) plotted as a function
of temperature.
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polymorph with high Eads will dominate the surface according
to Boltzmann statistics (in the presence of no external
influences). In addition, the ratio of the abundance of
polymorphs (polymorph with low Eads to high Eads) will
decrease with increasing temperature. On the contrary, if the
adsorption requires an activation barrier (Ea), then Eads is not
equal to Ed (solid black/red lines in Figure 3a). Ea signifies that
molecules are associatively adsorbing on the surface. If such a
barrier exists for adsorption, then the abundance of different
polymorphs on surface will be controlled by the height of Ea.
Thus, the experimentally observed low abundance of 1D chain
compared to the 1D island (as deposited) suggests the
following possibilities: (a) barrierless adsorption with high Eads
for 1D islands compared to the 1D chain or (b) adsorption
with activation barrier and the Ea for the formation of 1D chain
higher compared to 1D islands. The increasing ratio of
abundance of 1D chains and 1D islands (θC/θI) suggests that
Ed is larger for the 1D chain than that of the 1D island. Thus, it
can be concluded that the adsorption of both 1D chains and
1D islands possesses Ea, which is higher for the formation of
the 1D chain compared to the 1D island.
Next, we quantify the Eads for different polymorphs using the

desorption experiment. Assuming that there is an equilibrium
for the desorption of molecules from molecular domains to
bare surface and eventually to the atmosphere at a given
temperature. The activation barrier for the desorption of
molecules from islands/chains to bare surface is Ed and that for
re adsorption to islands/chains is Ea (cf. Figure 3a). If θ

i and θf

are the initial and final abundance of the adsorbates in a given
polymorph on the surface at a given temperature, then the
equilibrium can be written as

θ θ + [ ]F S
k

k

i fd

a

where kd and ka are the rate constants of desorption and
adsorption, respectively. [S] is the number of molecules that

desorb from the 1D islands or 1D chains and are available on
the surface, which maintains the equilibrium. When the
temperature increases, these free molecules evaporate from
the surface, and new set of molecules desorb from 1D islands
or 1D chains. Thus, eventually the overall abundance of the 1D
chains and 1D islands is decreasing with increasing temper-
ature. θi and θf of a given polymorph are obtained as follows.
For example, the abundance of any polymorph at ∼301.5 K is
equal to θi, and the abundance of that polymorph at ∼322.3 K
is θf. The equilibrium constant of the desorption−adsorption
process can be obtained according to Langmuir adsorption
isotherm as follows.

θ θ θ
θ

= − −
K

(1 )( )
eq

f i f

i (1)

where Keq is the equilibrium constant (kd/ka) of the
desorption−adsorption process. The derivation of eq 1 is
provided in the Supporting Information. Keq can also be
written in terms of Ed and Ea as follows (see details in the
Supporting Information)

= −
−

K A
E E

RT
expeq

d ai
k
jjj

y
{
zzz

(2)

Ed − Ea is equal to Eads of a given polymorph according to the
desorption−adsorption free energy profile (cf. Figure 3a).
Using eq 1, we obtained Keq for 1D chains and 1D islands at

different temperatures. Figure 3b shows a plot of ln(Keq) as a
function of 1/T (red dots and black squares). We employed eq
2 to obtain the adsorption energy for both types of
polymorphs. The Eads values obtained from the fitting
(depicted by black/red lines in Figure 3b) for the 1D island
(224.0 ± 0.9 meV) and the 1D chain (209.0 ± 1.3 meV) are
comparable. The magnitude of the adsorption energy suggests
that the intermolecular interactions are weak and of van der
Waals origin. It is known for Fc-based molecules that the
intermolecular interaction is a weak −C−H···π type inter-
action.42−44 We also used θC/θI as a function of temperature to
obtain the difference in Ea of the 1D chain and 1D island using
Boltzmann statistics (θ θ = −Δ/ e E K T

C I
/a B ). The average differ-

ence in Ea of the 1D chain and 1D island is 63.6 meV (ΔEa, cf.
Figure 3a). This is well above the thermal energy at room
temperature. Thus, it can be concluded that the Eads of both
1D chains and 1D islands are comparable, and the observed
low abundance of 1D chains at different temperatures is related
to the high Ea of 1D chains compared to that of 1D islands.
To further validate the formation of different growth

polymorphs, we have deposited FcS2C3 on HOPG from
methanol at room temperature. Surprisingly, we did not
observe 1D chains; instead, the surface is covered by
monocrystalline 1D islands and polycrystalline 2D islands as
reported previously.33 AFM images and a description about the
polymorphs are provided in the Supporting Information. The
formation of different polymorphs in the ultrathin films
(solid−air interface) of ferrocene derivatives has been reported
previously. The selection of polymorphs on the surface
depends on the boiling point of the solvents, with energetically
favorable polymorphs being preferred on graphite when drop-
casted from high boiling point solvents.33 We note that
solvent-induced polymorphsm is also known at the solid−
liquid interface.45,46 Upon annealing the ultrathin film, we
observed 1D chains, which indicate that the 1D chains are a
thermodynamically stable assembly of FcS2C3. As predicted by

Figure 3. (a) Free energy profiles for the formation of molecular
domains through different mechanisms. Black and red lines indicate
the adsorption−desorption energy profile for the 1D island and the
1D chain, respectively. The dashed blue line indicates barrierless
adsorption. (b) Calculated equilibrium constant Keq as a function of
inverse temperature for the 1D chain and 1D island.
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the MTDA, the high adsorption barrier (Ea) of the 1D chain
compared to the 1D island limits their formation at ambient
temperature. However, it is interesting to note that the 1D
chains are formed from toluene at room temperature. This is
related to the selection of thermodynamically stable poly-
morphs by solvents with high boiling point as shown before33;
see the discussion in the Supporting Information.
Next, we understand the molecular level assembly of 1D

islands and 1D chains. The packing of molecules within the 1D
islands has been microscopically understood in our previous
work.33 We have further optimized the geometry of previously
proposed molecular packing in 1D islands on two-layer
graphite using first-principles DFT as implemented in the
Quantum ESPRESSO. Details of the calculations are included
in Supporting Information. Figure 4a depicts the optimized

molecular layer on graphite with unit cell marked by black
dashed square. The lattice parameters of the adlayer are A⃗ =
0.984 nm, B⃗ = 0.850 nm, and α = 90°. The lower panel of
Figure 4a shows the side view of the layer. The molecules
within the assembly interact via an edge-to-face (−C−H···π)
interaction similar to that observed previously for other Fc
derivatives.42,44,47

Unlike 1D islands, we were unable to obtain high-resolution
images (both AFM/STM) due to the instability of the chains
during the scanning. Therefore, we propose the packing for the
1D chain based on the literature and theoretical calculations.
The optimized geometry (using first-principles DFT) of the
proposed molecular arrangement (top and side view) on
bilayer graphite is shown in Figure 4b. The building block of
this assembly is different from that of the 1D island (see the
unit cell marked with a dashed rectangle and the arrangement
of adjacent molecules). The lattice parameters of the unit cell
are A⃗ = 1.229 nm, B⃗ = 0.850 nm, and α = 90°. The adsorption
geometry allows an edge-to-center (−C−H···metal) inter-
action between adjacent molecules. This interaction is known
as pregostic interaction,48−50 which is also observed for
assemblies of metallocenes.29,43,44 Along A⃗, the Cp rings of
the molecules are aligned to one of the graphite compact
directions, which allows T-shaped π−π (edge-to-face)
interaction between Cp rings and graphite.32,43,51,52 That is,

three equivalent adsorptions of the molecules are possible, and
therefore three typical orientations are expected for 1D chains
on graphite, which is in accordance with the experimental
observation. The stability of the 1D islands and 1D chains may
be compared from the calculated binding energies (BE; see
details in the Supporting Information), which are −0.97 eV for
the 1D island and −0.81 eV for the 1D chain for the proposed
unit cell. We note that the BE is dependent on the size of the
unit cell. The experimentally (MTDA) observed adsorption
energies of 1D islands and 1D chains are lower than that
obtained from the calculations. The BE obtained from DFT
calculations (performed at 0 K) is not directly comparable to
the adsorption energies obtained from experiments performed
at higher temperatures. Because the molecules are thermally
excited, it would not require the same amount of energy to
desorb compared to a case when the molecules are at 0 K.
However, on a relative scale, the calculations and experiments
reveal that the BE/adsorption energy of molecules in 1D
chains and 1D islands are comparable.
We performed desorption experiments on an ultrathin film

of a slightly different molecule named 2-ferrocenyl-1,3-dithiane
(FcS2C4). AFM images of ultrathin films of FcS2C4 annealed at
different temperatures are provided in the Supporting
Information. “As-deposited” films show 1D chains and 1D
islands with a relatively high abundance of 1D islands. Upon
annealing, the average abundance of both 1D chains and 1D
islands reduces similarly as in FcS2C3. To obtain the
adsorption energies of these polymorphs, we follow the same
procedure as developed for the first case. Corresponding plots
and detailed discussions are provided in the Supporting
Information. It is found that the adsorption energy of the 1D
island (289.0 ± 0.7 meV) is higher than that of the 1D chain
(238.0 ± 0.7 meV). The theoretical calculations also show that
the binding energy of 1D islands is higher than that of 1D
chains. Optimized geometries corresponding to the 1D island
and the 1D chain are given in the Supporting Information. It is
also observed that Ea of 1D chains is higher than that of 1D
islands, which is obtained from θC/θI, and ΔEa is 76.2 meV.
Thus, it is summarized that the relatively high abundance of
1D islands with respect to 1D chains is due to the
contributions from both high Eads of 1D islands and high Ea
of 1D chains. It is also interesting to note that the average
abundance of 1D islands of FcS2C4 (0.192 ± 0.004) is higher
than that of 1D islands of FcS2C3 (0.140 ± 0.006). This
presumably is due to the high adsorption energy contribution
in the formation of 1D islands of FcS2C4.

■ CONCLUSION
We have investigated ultrathin films of 2-ferrocenyl-1,3-
dithiolane and 2-ferrocenyl-1,3-dithiane drop-casted from
toluene on HOPG at ambient conditions. Different types of
growth polymorphs are observed; by use of AFM and
theoretical calculations, the microscopic patterns of these
polymorphs are understood. We have used a new method,
which we name “microscopic thermal desorption analysis”
(MTDA), for understanding the desorption energetics of
growth polymorphs of these molecules on the surface. This
method uses a combination of statistical analysis of the
abundance of polymorphs and microscopy. Because MTDA
uses microscopic images for the abundance of the growth
polymorphs and addresses them separately, the obtained
adsorption energies do not suffer from the averaging effect.
Using MTDA, we show quantitatively various aspects of the

Figure 4. (a, b) Proposed models for molecular arrangement of
FcS2C3 on the surface for the 1D island and the 1D chain,
respectively. Corresponding side views are shown at the bottom.
Unit cells of adlayers are marked with black/red dashed lines. A⃗ and B⃗
are the lattice vectors and α is the angle between these vectors. Blue
arrows correspond to graphite compact directions.
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adsorption energetics for the growth polymorphs of FcS2C3
and FcS2C4 on graphite. This method may be extended to
other molecular adsorbates on surfaces and will be used in
understanding and fine-tuning molecular assemblies.
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