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The vapour—liquid phase coexistence and surface tension of hard-core Yukawa fluids with short attraction range, A = 8.0,
9.0 and 10.0, are reported using grand-canonical transition-matrix Monte Carlo (GC-TMMC) with the histogram
reweighting method. Surface tension is calculated using finite-size scaling approach of Binder. We also compare GC-TMMC
results with the available literature data for Yukawa fluids with A = 1.8, 3.0 and 4.0. Critical properties obtained from
rectilinear diameter approach and least square-technique are also reported. GC-TMMC results are found to be more precise
than the previous reported values. We also present the corresponding state of surface tension for extremely short-range

attractive Yukawa fluids.
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1. Introduction

In recent years, phase transition for colloidal suspensions
has become a subject of growing interest as it is commonly
found in many industrial products such paints, inks, food,
detergents and cosmetics. Furthermore, it plays an
important role in biology, for example, blood. Interaction
range of colloidal solvent can be modified by an addition
of charged nanoparticles [1,2], non-adsorbing polymer [3]
or other solutes [4,5]. Yukawa potential is one of the most
suitable models for such systems since, upon varying the
interaction range, one can represent the behaviour of some
real system. Moreover, its analytical tractability adds to its
popularity as a simple model for protein liquids [6,7],
charged stabilised colloids [8] and ionic fluids [9,10].
Yukawa potential is represented by the following
expression:

o if r<o

ey

wr) = — S exp(—A(r — a)) if r=o’

where ¢ is the potential depth, o is the molecular diameter
and A is the range of the potential.

Vapour—liquid equilibria of Yukawa potential has
been studied by a few authors recently by various
theoretical approaches [6,7,11—13]. Furthermore, this was
aided by molecular simulation studies on the same model
system [4,14,15]. The molecular simulation techniques
mainly used by earlier workers were based on Gibbs
ensemble Monte Carlo (GEMC) [16—19] and slab-based
molecular dynamics (MD) and Monte Carlo (MC) methods
[14,20,21]. The results of the former method yield

coexistence properties of the bulk phase without the contact
of the phases; hence GEMC is unable to capture interfacial
properties. On the other hand, the latter method is mainly
popular to obtain interfacial properties but requires a larger
system size for the stabilisation of the vapour—Iliquid
interface. Moreover, such a method is not suitable at higher
temperature for the evaluation of bulk properties compared
with other available methods [22]. The other prominent
approaches for the study of vapour—liquid equilibrium by
molecular simulation include grand-canonical transition-
matrix Monte Carlo [23,24], Gibbs—Duhem integration [25],
and NPT + test particle [26—28]. Grand-canonical tran-
sition-matrix Monte Carlo (GC-TMMC) stands out
among all the above methods due to its ability accurates to
obtain phase equilibria and interfacial properties in
conjunction with the finite-size scaling approach of Binder
[29]. Due to its greater efficiency than GEMC and its
parallelisation ability, it has been applied to a variety of
systems [30-35].

Molecular simulation data for vapour—liquid inter-
facial properties of Yukawa fluids are scarce. Moreover,
there is a lack of agreement in the data available in the
literature, which is based on either slab-based MC or MD
techniques. In particular, phase coexistence and surface
tension for HCAY fluid with short interaction range is not
studied in details via computer simulations. Most of the
molecular simulation studies until now have been done
with 1.8 = A = 7.0. This work is primarily to provide
the phase equilibria and interfacial properties of
Yukawa fluids with extremely short attraction range
using GC-TMMC and finite-size scaling approach [29].
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Additionally, we compare the results of variable
attraction range via GC-TMMC with those available in
the literature.

The rest of the paper is organised as follows: in the
next section, we briefly describe methods used for
calculating the phase equilibria and interfacial properties
by molecular simulation along with simulation details;
Section 3 presents the results and discussion, and we
conclude in Section 4.

2. Methodology

In this work, simulations are conducted in the grand-
canonical ensemble, where the chemical potential p,
volume V and temperature 7 are kept fixed and particle
number N and energy U fluctuate. The probability m, of
observing a microstate s with energy Ug and particle
number Ny is,

exp [—B(Us — uNy)l, (@)

where B = 1/kgT is the inverse temperature, = is the
grand-canonical partition function and A is the de Broglie
wavelength. The probability II(N) of observing a
macrostate with a given number of molecules (density) is
given by,

o) = > m. 3)
Ny=N

We employ the transition-matrix Monte Carlo scheme
[36] with an N-dependent sampling bias to obtain the
probability distribution II(N). The method monitors the
acceptance probability of attempted MC moves and
subsequently uses this information to calculate the
macrostate transition-probability matrix. For every
attempted move from a microstate s to a microstate ¢,
regardless of whether the move is accepted, we update a
collection matrix C with the acceptance probability a(s —
) = min[1, m /] as follows,

CIN—=>M)y=CWN—-M)+a(s—1)
and 4
CIN—N)=C(N— N)+ 1 — a(s — 1),

where N and M represent the macrostate labels for
microstates s and ¢, respectively. At any time during the
simulation, the macrostate transition-probability matrix
can be obtained by appropriately normalising the
collection matrix,

C(N—M)

P(N— M) = 7206‘(1\/_) 0)

&)
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Macrostate probabilities are obtained by utilising the
detailed balance expression,

II(N)P(N — M) = II(M)P(M — N).

For a grand-canonical simulation, where transitions in
N are suchthat N—N ,N—N+1 and N— N — 1, the
transition-probability matrix P is tri-diagonal. In such
conditions, a sequential approach provides a suitable
means for obtaining the macrostate probabilities,

P(N+1—N)

]. ©6)

To ensure adequate sampling of all states, we employ a
multi-canonical sampling [37] scheme that encourages the
system to sample all densities with uniform frequency.
This procedure is implemented by assigning each
macrostate a weight n(N) that is inversely proportional
to the current estimate of its probability,
n(N) = —InII(N). Acceptance criteria are modified to
account for the bias as follows,

n(M) Tn} ’ )

—_ =

an(s— 1) = min {1, )
where m(N) and n(M) are weights corresponding to
microstates s and ¢, respectively. Introduction of a
weighting function does not alter the mechanism through
which the collection matrix is updated. The unbiased
acceptance probability is still used to update the collection
matrix.

Simulations are conducted at a specified value of the
chemical potential, which is not necessarily close to the
saturation value. To determine the phase-coexistence
value of the chemical potential, the histogram reweighting
method of Ferrenberg and Swendson [38] is used. This
method enables one to shift the probability distribution
obtained from a simulation at chemical potential ug to a
probability distribution corresponding to a chemical
potential w using the relation,

InTI(N; w) = InTI(NV; o) + B( — po)N. (8)

To determine the coexistence chemical potential, we
apply the above relation to find the chemical potential that
produces a probability distribution I1.(N), where the areas
under the vapour and liquid regions are equal. Saturated
densities are related to the first moment of the vapour
and liquid peaks of the coexistence probability distri-
bution. To calculate the saturation pressure, we use the
expression

BpV = In (ZHC(N)/HC@)) - n@. 9
N
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The critical properties are estimated from a least-
square fit of the law of rectilinear diameter [39]

TBC 7’/3(:+A
l v
—p'=C(1-=) +C(1-= 10
porea(i-D) (-1 o

C C

where p’ and p? are the liquid and vapour densities,
respectively, and C; and C, are fitting parameters.
The critical exponent S, is taken as 0.325 and A = 0.51.
The critical temperature, 7, estimate from the above is
utilised to get the critical density from the least-square fit
to the following expression.

p'+p
2

= pe + C3(T = To). (1)

Critical pressure is calculated using the least-square
fitting to the following expression

InP=A+B/T, (12)

where A and B are constants.

In this work, we adopt units such that o and € are unity.
Reduced units used in this study are temperature
T* = kTe, density p* = po °, pressure P* = Po /e and
surface tension y* = yo?/e.

Simulations for calculating saturated densities and
vapour pressures are conducted using Intel Xeon dual-core
dual processor servers. The MC move distribution is: 30%
particle displacement, 35% particle insertion and 35%
particle deletion. One of the salient features of GC-TMMC
is the ability to use a multiprocessor to collect the
transition matrix. In this approach, we run the simulation
simultaneously on a multi-processor (in the current work
we have used two quad-core processors). Each core of the
processor works on a specific range of the particle number
i.e. each processor has the responsibility to fill a certain
range of the transition matrix. We frequently gather the
transition probabilities from individual processors in the
global collection matrix. Hence, weights used in the multi-
canonical sampling get updated frequently.

Typical maximum molecule numbers for these
simulations varied from 350 to 900 for phase-coexistence
calculations. Simulation size is increased at temperature
closer to critical point. In general, we have used 8—10
simulation box size for phase equilibria calculation. Four
runs were performed to calculate the statistical error. Each
run for phase coexistence took around 2—4 h depending on
the system size. Surface tension for each temperature is
calculated based on box length, L =10, 12 and 14.
Maximum system size for such calculation is kept around
2400-2600. The run length for each simulation run varied
from 10-48 h depending on system size.

3. Results and discussions

In the first part of this section, we compare the results of
GC-TMMC with that from GEMC [19] and slab-based
MC and MD methods [21]. Figure 1 presents the phase-
coexistence envelope for interaction range A = 1.8.
Saturated densities and pressure obtained by GC-TMMC
contain less than 0.5% error. Liquid phase density data of
GC-TMMC are in reasonably good agreement with the
GEMC data of Shukla [19] at substantial subcritical
temperatures. However, GEMC data appear to deviate
significantly from GC-TMMC values at higher tempera-
ture. This may be because close to the critical temperature,
GEMC is known to provide erroneous values of densities

1 | | | | | |
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Figure 1. Coexistence vapour and liquid densities of hard-core
Yukawa fluid at A = 1.8. Solid curve represents the data obtained
from GC-TMMC. Filled circles and triangles are the data from
GEMC [19] and canonical Monte Carlo and molecular dynamic
[21] simulations, respectively.
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Figure 2. The vapour pressure curve of hard-core Yukawa fluid
at A = 1.8. The results of this work are shown with the other
literature values. Solid line represents the data obtained from GC-
TMMC. Filled circles and triangles are the data from GEMC [19]
and canonical Monte Carlo and molecular dynamic [21]
simulations, respectively.
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Figure 3. The vapour pressure curve of hard-core Yukawa fluid
at A = 3.0. The results of this work are shown with the other
literature values. Solid line represents the data obtained from GC-
TMMC. Filled triangles are the data from canonical Monte Carlo
and molecular dynamic [21] simulations, respectively.

of liquid and vapour phases due to phase switch behaviour
of the simulation box [40]. Moreover, system size used by
Shukla for GEMC [19] appears to be insufficient for
temperature closer to critical temperature. On the other
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hand, there is a good agreement between GC-TMMC and
slab-based methods for saturated liquid density. Never-
theless, saturated vapour density due to slab-based MC and
MD [21] is lower than that from GC-TMMC.

Figure 2 shows the saturated vapour pressure in a
Clausius—Clapeyron plot, as calculated via GC-TMMC.
Comparison with the literature data follows the same trend
as with the orthobaric densities. There is in general
reasonable agreement between slab-based methods and
GC-TMMC; however, error associated with GEMC data is
substantial. Furthermore, literature data are slightly
scattered around the straight line based on the current
work. Interestingly, the relative behaviour of these
methods changes at lower interaction range as shown in
Figure 3, which presents the vapour pressure for Yukawa
fluid with A = 3.0. It is clear that pressure calculated using
GEMC simulation is in extremely good agreement; on the
contrary to the case for A = 1.8, slab-based methods yield
pressure away from the GCMC simulation data. Table 1
tabulates the results for A = 1.8, 3.0 and 4.0 via GC-TMMC.

We have used least-square technique and rectilinear
diameter approach to calculate the critical points. Our
estimates based on the GCMC simulations are tabulated in
Table 2 along with the literature estimates. Similar to the
behaviour seen in our comparison of the phase equilibrium

Table 1. Vapour-liquid coexistence data from grand-canonical transition-matrix Monte Carlo simulations of hard-core Yukawa molecules

with variable interaction range (A = 1.8, 3.0, 4.0).

A T Bu P P, n v" (This work) v " (Lit)
1.8 0.9 —3.9829, 0.01883, 0.02388, 0.7340,
1.0 —3.4145, 0.03979, 0.05069 0.66864 0.372, 0.375
0.30,
1.1 —2.9878, 0.07352, 0.103315 0.5638, 0.121, 0.13,
0.09,
12 —2.9155, 0.082114 0.11975,, 0.5378,
1.13 —2.8811, 0.08664,4 0.12971,4 0.5229;,
4 —2.8475, 0.09136,4 0.14143,4 0.5058;
—2.8147, 0.09631, 0.15545,5 0.4881, 0.0285 0.10
0.03,
3.0 0.55 —4.18975, 0.009215 0.01871¢ 0.8477¢ 0.383¢ 0.39;
0.58 —3.83114 0.01438, 0.02905, 0.8099,6 0.29,
0.6 —3.6184¢ 0.01891, 0.038365 0.7805, 0.215
0.65 —3.1718, 0.03460, 0.07422, 0.6980, 0.133, 0.144
0.66 —3.0946, 0.03862, 0.084631 0.6790,
0.67 —3.02015 0.043033 0.09699,, 0.6565,
0.68 —2.9492, 0.04779, 0.11167 0.63395
0.69 —2.8819; 0.052924 0.12939,4 0.6070,
0.70 —2.8176, 0.05845, 0.15244 4 0.57605
4.0 0.45 —4.1555¢, 0.00783;5 0.01956,4 0.88885,
0.47 —3.8321, 0.01166, 0.029134 0.8633 5
0.485 —3.61664 0.01534, 0.03863¢ 0.8351 4 0.1955 0.21g
0.50 —3.41935 0.01985, 0.05088¢ 0.8031 ;6 0.1629 0.22,
0.515 —3.2403, 0.025274 0.06670;, 0.77015
0.53 —3.0759 0.03179; 0.08796,, 0.7306, 0.0828y 0.09,
0.55 —2.8792, 0.04238 0.131204, 0.6636,4

Subscripts v and [ represents vapour and liquid, respectively. The errors in densities and pressures, chemical potential and surface tension represent one SD of the mean for four
independent runs. Comparison between the surface tension obtained from GC-TMMC in the present work with those of the canonical ensemble MD and MC simulations of [21].
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Table 2. The critical temperature T;, density pc and pressure P;
data for hard-core Yukawa fluids with variable interaction range
A estimated from GC-TMMC, rectilinear diameter approach and
least-square fit and compared with literature values.

A T, e P; Source

1.8 1.180, 0.315, 0.110, This work
1.179 0.308 0.102 [21]
1.190 0.306 0.121
1.192 0.294 [18]

3.0 0.722, 0.355; 0.072, This work
0.725 0.351 0.099 [21]
0.715 0.375 [18]

4.0 0.572, 0.385, 0.057, This work
0.593 0.361 0.081 [21]
0.576 0.377 [18]

8.0 0.382, 0.4475 0.0445 This work

9.0 0.362, 0.4545 0.043, This work
0.427 0.57 [17]

10.0 0.343, 0.471, 0.039, This work

data, critical point parameters also reflect the similar
scatter. For Yukawa fluid with attractive interaction range
A= 1.8, GEMC results are closer to that of GC-TMMC.
Critical pressure particularly is not well predicted by the
earlier workers. For example, in slab-based methods,
Monte Carlo and molecular dynamics yield substantial
different critical pressure. For A = 3.0 and 4.0, the critical
point predicted by the slab-based method appears
erroneous.

We also compared the surface tension data calculated
by GC-TMMC along with finite-size scaling technique.
Figure 4 presents a typical probability distribution curve
obtained for two different subcritical temperatures. Finite-
size scaling for A = 1.8 for two different temperatures as
per Binder’s formalism is shown in Figure 5. Table 1
summarises the surface tension results for A = 1.8, 3.0 and
4.0. The results are in general good agreement with
the slab-based methods. In general, slab-based method
are efficient for surface tension calculation at lower
temperature, which was also pointed out in our earlier
work on square-well fluid [22]. It is evident that GC-TMMC
is an excellent choice for phase equilibrium calculation as
well for surface tension particularly at moderate and higher
temperature; however, at significantly subcritical tempera-
ture, molecular dynamics appears to be more efficient
method for interfacial property calculations.

Sampling difficulty at lower temperatures and at higher
liquid densities, as observed in this work, is also common
in various other systems such as polymers and associating
fluids. For example, sampling of chain molecules is not
efficient without utilising bias sampling techniques.
Configuration bias Monte Carlo technique [41] is
particular known to be extremely successful for these
systems. Since its introduction, it has been applied

(@)

InIT (N)

T T T
0 500 1000 1500
N

(b)
150

100

InIT (N)

50

T T
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Figure 4. (a) Particle number probability distribution, for hard-
core Yukawa fluid at A = 1.8 against number of particles in the
box for varying box sizes at 7% = 1.0 at coexistence chemical
potential. Curves a, b, ¢ and d are for simulation box lengths 8,
10, 12 and 14, respectively. (b) Same as in (a) but for 7 = 1.1.
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Figure 5. The system size dependence of the surface tension for
hard-core Yukawa fluid with A = 1.8 at 7* = 1.0 and 1.1, which
are represented by filled circles and squares, respectively. The
dashed lines show the linear extrapolation to infinite system size.
L is the edge length of the cubic simulation box.



to variety of systems [31,42]. Simulations of associating
fluids, on the other hand, face a different problem. Even
vapour phase of a strongly associating fluid can have local
high density and it usually is a very slow relaxing system.
Configurations, which are important due to favourable
energy where molecules are associated, may be difficult to
find through usual MC moves. Similarly, bound molecules
may be rarely separated through the usual MC trials. Such
problems can be remedied through the use of algorithms
such as aggregation—volume bias move [43,44] or
unbound—bound bias move [32,45], which have been
used by many authors to alleviate sampling difficulties in
associating fluids. The above methods can be combined
with the GC-TMMC approach for an efficient sampling of
high-density system. However, we did not employ any
biasing technique apart from multi-canonical approach in
this work. A thorough investigation of the sampling
efficiency of GC-TMMC along with different biasing
techniques for a variety of systems particularly at higher
density is kept for a future study.

It is known that the range of attraction interaction
determines the existence of stable vapour—liquid coex-
istence. Minimum attraction range should be one-sixth of
the range of repulsion for stable liquid—vapour coex-
istence. It was shown by Dijkstra [4] that for short-range
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Yukawa fluid, A =7 and 25, fluid—fluid coexistence
regions are metastable with respect to freezing.
In particular, vapour—liquid equilibria data for short
attractive interaction range A > 8 are scarce for some or
absent for others. Due to the metastability of fluid—fluid
coexistence at extremely small interaction range, simu-
lation is difficult to perform. Additionally, the temperature
range of vapour—liquid phase transition diminishes
significantly with the reduction of the attraction range
and further adds to the complexity of obtaining the correct
coexistence properties. We have done numerous calcu-
lations using GC-TMMC to obtain the vapour-liquid
coexistence and surface tension data for A = 8.0, 9.0 and
10.0. Table 3 summarises the data. Figure 6 presents the
phase diagram of the above system. The behaviour is not
much different from long interaction range systems,
except that coexistence envelop is found to be smaller and
shrinks with the reduction in the interaction range.
Recently, Orea and Duda [20] have worked on the
corresponding states law of the Yukawa fluid. Surface
tension of these fluids is found by these authors to fall on a
master curve, as suggested by the corresponding state
theory. On the other hand, our work as shown in Figure 7
suggests a slight variation with the range of potential,
specifically for short interaction range fluids. The above

Table 3. Vapour-liquid coexistence data from GC-TMMC simulations of hard-core Yukawa molecules with variable interaction range

(A =8.0,9.0, 10.0).

A r* Bu p* Py pi Y
8.0 0.35 —3.1854,, 0.01812, 0.0712, 0.9015
0.36 —29715, 0.02434;5 0.1027, 0.852; 0.04985
0.365 ~2.87245 0.027995 0.12535 0.8174 0.0332
0.37 —2.7780, 0.03212, 0.1563, 0.7725 0.01884
0.372 —3.2421, 0.03389; 0.1712 0.749 0.01355
0.374 —3.20605 0.03578, 0.19085 0.729,
0.375 —2.6886; 0.03676, 0.204359 0.7114
9.0 0.335 —3.10756 0.01909, 0.0802; 0.906,
0.34 —2.9892,, 0.02242, 0.09855 0.870,
0.345 —2.87965 0.02611, 0.1215, 0.847, 0.035155
0.35 —2.77464 0.03037; 0.1532; 0.800,
0.351 —2.75425 0.03129, 0.1622, 0.7915 0.0163,
0.352 —2.7349 0.032184 0.170, 0.773; 0.0143,
0.353 —2.7125¢ 0.033324 0.184, 0.759;
0.354 ~2.6929;7 0.034314; 0.195, 0.745, 0.0075¢
0.355 —2.6734,3 0.035354 0.208, 0.726,
0.356 —2.65419 0.036434 0.2225 0.7115
0.357 —2.63614 0.037445 0.235, 0.699,
10.0 0.33 ~2.860710 0.02549; 0.1245; 0.855, 0.0335
0.331 —2.8370;9 0.02637, 0.1307g 0.846,
0.332 —2.8143; 0.02723, 0.1375, 0.841,
0.335 —2.7455, 0.03010, 0.16254 0.799; 0.018,
0.336 —2.72345 0.031085 0.17105 0.797,
0.337 —2.70124 0.03212, 0.18235 0.784,
0.338 —2.6802, 0.03316, 0.1962, 0.763,
0.34 ~2.6361,3 0.035504¢ 0.22944, 0.719; 0.00525

Subscripts v and [ represents vapour and liquid, respectively. The errors in densities and pressures, chemical potential and surface tension represent one SD of the mean for four

independent runs.
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Figure 6. Coexistence vapour and liquid densities of hard-core
Yukawa fluid for three values of interaction range A = 8.0, 9.0
and 10.0. Filled symbol represent the corresponding critical
point.
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Figure 7. Reduced surface tension yg = vy/(p*’T.) as a
function of reduced temperature 7Ty = 7/T. for hard-core
Yukawa fluid. Legends represent the interaction range of the
hard-core Yukawa fluid.

observation may be due to the difference in the critical
property estimated from GC-TMMC and other methods.
Furthermore, the calculation of critical point using
rectilinear diameter approach is an approximate method
and may lead to dubious values particularly at short
interaction range, where the nature of the phase behaviour
is more flat. To verify the behaviour of corresponding
states of Yukawa fluid, we reserve the calculation of
critical point for a future study using finite-size scaling
[46], which is proven to be the precise technique. This
method would certainly be more useful and perhaps
necessary for short-range Yukawa fluid, where free-energy
difference between two phases is found to be extremely
small, which is also evident from the surface tension
values listed in Table 3.

4. Conclusions

In summary, we have demonstrated grand-canonical
transition-matrix Monte Carlo for the calculation of
vapour—liquid coexistence and interfacial properties for a
model for colloidal suspension. The method, in general, is
found superior to GEMC and slab-based methods for the
calculation of phase equilibria and interfacial temperature
in every aspects. However, at lower temperature, slab-
based method is more preferred for the calculation of
interfacial properties as GCMC simulations are extremely
difficult to conduct for dense liquids. Surface tension data
of extremely short interaction range, A = 8§, is found to
deviate slightly from those with A < 8 in the correspond-
ing plot, which may be due to the error associated with
rectilinear diameter approach and scaling analysis.
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